Automatic Control Systems 9th Edition Solution Manual

So lu t io ns M an ua l

AutomaticControlSystems,9thEdition A  

Chapter2Solution ns

Golnarraghi,Kuo

C Chapter 2 2 21(a) Poless:s=0,0,1, 10; 



(b) Poles:s=2,,2;



Zeross:s=2,f,f,f. 



Zeros:s=0.







Thepoleandzeroats=1ccanceleachotther.











( Poles:s=0,1+j,1j; (c) 

(d)Poles:s =0,1,2,f.



Zeross:s=2.

 2 2-2)

 ሺ௦ାଵሻ

a)

‫ܩ‬ሺ‫ݏ‬ሻ ൌ

b)

‫ܩ‬ሺ‫ݏ‬ሻ ൌ ሺ௦ାଵ ሺ ሻሺ௦ାସ

c)

‫ܩ‬ሺ‫ݏ‬ሻ ൌ

௦ሺ௦ା ௦ ଶሻሺ௦ାଷሻమ ௦మ

௦ మ ିଵ ௦ మ ሺ௦ାଷሻሺ௦ାଵሻమ

2 2-3) M MATLABcode e:

21 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

clear all; s = tf('s')

'Generated transfer function:' Ga=10*(s+2)/(s^2*(s+1)*(s+10)) 'Poles:' pole(Ga) 'Zeros:' zero(Ga)

'Generated transfer function:' Gb=10*s*(s+1)/((s+2)*(s^2+3*s+2)) 'Poles:'; pole(Gb) 'Zeros:' zero(Gb)

'Generated transfer function:' Gc=10*(s+2)/(s*(s^2+2*s+2)) 'Poles:'; pole(Gc) 'Zeros:' zero(Gc)

'Generated transfer function:' Gd=pade(exp(-2*s),1)/(10*s*(s+1)*(s+2)) 'Poles:'; pole(Gd) 'Zeros:' zero(Gd)

22 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition   

Chapter2Solutions

Polesandzerosoftheabovefunctions: (a) Poles:00101 Zeros:2 (b) Poles:2.00002.00001.0000 Zeros:01 (c) Poles: 0 1.0000+1.0000i 1.00001.0000i Zeros:2 Generatedtransferfunction: (d)usingfirstorderPadeapproximationforexponentialterm Poles: 0 2.0000 1.0000+0.0000i 1.00000.0000i  Zeros: 1 

23 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

2-4) Mathematical representation: In all cases substitute ‫ ݏ‬ൌ ݆߱ and simplify. The use MATLAB to verify. R

10( jZ  2) 2 I1 Z ( jZ  1)( jZ  10) 10( jZ  2) (  jZ  1)( jZ  10) u 2 Z ( jZ  1)( jZ  10) ( jZ  1)( jZ  10) 10( jZ  2)(  jZ  1)( jZ  10) a)  I2 Z 2 (Z 2  1)(Z 2  100) jZ  2  jZ  1  jZ  10 R 22  Z 2 1  Z 2 102  Z 2 R(e jI1 e jI2 e jI3 ) I3

10 22  Z 2 1  Z 2 102  Z 2 ; Z 2 (Z 2  1)(Z 2  100)

Z 2 tan 1 2  Z 2

2 2  Z2 2

Z 2 tan 1 1  Z

Z

1 Z2

2 2 tan 1 10  Z

I I1  I2  I3



1

10 102  Z 2



R

10 I1 ( jZ  1) 2 ( jZ  3) 10 ( jZ  1)( jZ  1)( jZ  3) u ( jZ  1)( jZ  1)( jZ  3) (  jZ  1)( jZ  1)( jZ  3) 10( jZ  1)( jZ  1)( jZ  3) b) I2 (Z 2  1) 2 (Z 2  9)  jZ  1  jZ  1  jZ  3 R 1 Z2 1 Z2 9  Z2 R (e jI1 e jI2 e jI3 ) I3

10 1  Z 2 9  Z 2 ; (Z 2  1) 2 (Z 2  9) Z 2 tan 1 1  Z

Z 2 tan 1 1  Z

Z 2 tan 1 9  Z

I I1  I2  I3

24 

1 1 Z2

1 1 Z2

3 9  Z2



AutomaticControlSystems,9thEdition  

Chapter2Solutions

10 jZ ( j 2Z  2  Z 2 ) 10 j (2  Z 2  j 2Z ) u Z ( j 2Z  2  Z 2 ) (2  Z 2  j 2Z ) 10(2Z  (2  Z 2 ) j ) Z (4Z 2  (2  Z 2 ) 2 )

c)

R 

R

2Z  (2  Z 2 ) j 4Z 2  (2  Z 2 ) 2

R (e jI )



10 4Z 2  (2  Z 2 ) 2 Z (4Z 2  (2  Z 2 ) 2 )

10

Z 4Z  (2  Z 2 ) 2 2

;

2  Z 2

I

tan 1



4Z  (2  Z ) 2

2 2

2Z 4Z 2  (2  Z 2 ) 2 R

e 2 jZ 10 jZ ( jZ  1)( jZ  2)  j ( jZ  1)( jZ  2) 2 jZ I1 e 10Z (Z 2  1)(Z 2  2) d)  jZ  2  jZ  1 2 jZ  jS / 2 R e 22  Z 2 1  Z 2 I2 R (e jI1 e jI2 e jI3 ) 

1 10Z 2  Z 2 1  Z 2 Z 2

2 2 tan 1 2  Z

2 2  Z2  2

Z 2 tan 1 1  Z

I I1  I2  I3

1 1 Z2

MATLABcode: clear all; s = tf('s')

'Generated transfer function:' Ga=10*(s+2)/(s^2*(s+1)*(s+10)) figure(1)

25 

;

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Nyquist(Ga)

'Generated transfer function:' Gb=10*s*(s+1)/((s+2)*(s^2+3*s+2)) figure(2) Nyquist(Gb)

'Generated transfer function:' Gc=10*(s+2)/(s*(s^2+2*s+2)) figure(3) Nyquist(Gc)

'Generated transfer function:' Gd=pade(exp(-2*s),1)/(10*s*(s+1)*(s+2)) figure(4) Nyquist(Gd)

Nyquistplots(polarplots): Part(a)

26 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

Nyquist Diagram 15

10

Imaginary Axis

5

0

-5

-10

-15 -300

-250

-200

-150

-100

-50

0

Real Axis

   Part(b) Nyquist Diagram 1.5

1

Imaginary Axis

0.5

0

-0.5

-1

-1.5 -1

-0.5

0

0.5

1

1.5

2

2.5

Real Axis

  Part(c)

27 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

Nyquist Diagram 80

60

40

Imaginary Axis

20

0

-20

-40

-60

-80 -7

-6

-5

-4

-3

-2

-1

0

Real Axis

   Part(d)

Nyquist Diagram 2.5 2 1.5

Imaginary Axis

1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Real Axis



28 

AutomaticControlSystems,9thEdition  

2-5)

Chapter2Solutions

In all cases find the real and imaginary axis intersections.

10( jZ  2) (Z 2  4)

10 ( jZ  2)

G ( jZ )

2

Re ^G ( jZ )` cos I a)

(Z 2  4) Z

Im ^G ( jZ )` sin I

(Z 2  4)

10 (Z  4) 2

, ,

2

I

(Z 2  4)

tan 1

Z (Z 2  4)

10

R

(Z 2  4)

lim Z o0 G ( jZ ) 5; I

90$ 0 lim Z of G ( jZ ) 0; I tan 1 0 180$ 1 Real axis intersection @ jZ 0 tan 1 1

Imaginary axis int er sec tion does not exist. b&c) ݈݅݉ఠ՜଴ ‫ܩ‬ሺ݆߱ሻ = 1 ‫ ס‬0o

݈݅݉ఠ՜ ‫ܩ‬ሺ݆߱ሻ = 0 ‫ ס‬-180o ‫ܩ‬ሺ݆߱ሻ ൌ

ഘ మ

ଵ ഘ

ଵିቀഘ ቁ ାଶకቀ௝ ഘ ቁ ೙ ೙

ഘ మ

మ ഘ మ

ഘ మ

ቆଵିቀഘ ቁ ିଶకቀ௝ ഘ ቁቇ ೙ ೙ ൬ଵିቀഘ ቁ ൰ ାସቀഘ ቁ ೙

Therefore: ഘ మ

Re{ G(j) } =

ଵିቀഘ ቁ

೙ మ ഘ మ ഘ మ ൬ଵିቀഘ ቁ ൰ ାସቀഘ ቁ ೙ ೙ ഘ

Im {G(j)} = െ

ଶకቀ௝ ഘ ቁ

೙ మ ഘ మ ഘ మ ൬ଵିቀഘ ቁ ൰ ାସቀഘ ቁ ೙ ೙

29 

Golnaraghi,Kuo

2  jZ (Z 2  4)

;

AutomaticControlSystems,9thEdition  

Chapter2Solutions

If Re{G(j )} = 0

Ö

߱ ൌ ߱୬

If Im{ G(j )} = 0

Ö

߱ൌͲ ൝߱ ՜ Ͳ ߱ ՜ 

If  = n

Ö

‫ܩ‬ሺ݆߱௡ ሻ  ൌ  ‫ܩס‬ሺ݆߱௡ ሻ  ൌ  െͻͲ௢

If  = n and  = 1

Ö

‫ܩ‬ሺ݆߱௡ ሻ  ൌ 

If  = n and  ՜ Ͳ

Ö

‫ܩ‬ሺ݆߱௡ ሻ ՜ 

If  = n and  ՜ 

Ö

‫ܩ‬ሺ݆߱௡ ሻ ՜ Ͳ

d)

e)

G(j) =

்ఠି௝ ఠሺଵାఠమ ் మ ሻ

Ž‹՜଴ ሺŒሻ =

‫ ס‬- 90o

Ž‹՜ ሺŒሻ =

‫ ס‬-180o

ȁ‫ ܩ‬ሺ݆߱ሻȁ ൌ ቚ

௘ షೕഘಽ ଵା௝ఠ்

‫ ס‬G(j) = ‫ס‬

ቚ  ൌ

ଵା௝ఠ்

ଵ ξଵାఠమ ் మ



+ ‫ି ݁ ס‬௝ఠ௅ = tan-1 ( T) –  L

210 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition   26

Chapter2Solutions

MATLABcode: clear all; s = tf('s')

%Part(a) Ga=10/(s-2) figure(1) nyquist(Ga)

%Part(b) zeta=0.5;

%asuuming a value for zeta 1

wn=2*pi*10 Gc=1/(1+2*zeta*s/wn+s^2/wn^2) figure(3) nyquist(Gc)

%Part(d) T=3.5 %assuming value for parameter T Gd=1/(s*(s*T+1)) figure(4) nyquist(Gd)

211 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

%Part(e) T=3.5 L=0.5 Ge=pade(exp(-1*s*L),2)/(s*T+1) figure(5) hold on; nyquist(Ge)

 notes:InordertouseMatlabNyquistcommand,parametersneedstobeassignedwithvalues,andPade approximationneedstobeusedforexponentialterminpart(e). Nyquistdiagramsareasfollows:

212 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

Part(a)

Nyquist Diagram 2.5 2 1.5

Imaginary Axis

1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -5

-4

-3

-2

-1

0

1

Real Axis

   Part(b)

Nyquist Diagram 1.5

1

Imaginary Axis

0.5

0

-0.5

-1

-1.5 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Axis



213 

AutomaticControlSystems,9thEdition   

Chapter2Solutions

Golnaraghi,Kuo

Part(c)

Nyquist Diagram 0.8

0.6

0.4

Imaginary Axis

0.2

0

-0.2

-0.4

-0.6

-0.8 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

   Part(d)

214 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

Nyquist Diagram 60

40

Imaginary Axis

20

0

-20

-40

-60 -3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Real Axis

  Part(e)

Nyquist Diagram 0.8

0.6

0.4

Imaginary Axis

0.2

0

-0.2

-0.4

-0.6

-0.8 -1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Axis



215 

AutomaticControlSystems,9thEdition  

2-7)

a)

Chapter2Solutions

ଶሺ௝ଶఠାଵሻ

G(j) =

௝ఠሺ଴Ǥଵ௝ఠାଵሻሺ଴Ǥ଴ଶ௝ఠାଵሻ

Steps for plotting |G|: (1) For  < 0.1, asymptote is Break point:  = 0.5 Slope = -1 or -20 dB/decade (2) For 0.5 <  < 10 Break point:  = 10 Slope = -1+1 = 0 dB/decade (3) For 10 <  < 50: Break point:  = 50 Slope = -1 or -20 dB/decade (4) For  > 50 Slope = -2 or -40 dB/decade Steps for plotting ‫ ס‬G ଶ

(1) ‫ס‬ (2) ‫ס‬

ଵ ଶ௝ఠାଵ

(3) ‫ס‬

(4) ‫ס‬

b)

= -90o

௝ఠ

=ቐ

ଵ ଴Ǥଵ௝ఠାଵ

߱ ՜ Ͳǣ‫ס‬

߱ ՜  ‫ס  ׷‬

=ቐ

ଵ ଴Ǥ଴ଶ௝ఠାଵ

ଵ ଶ௝ఠାଵ

߱ ՜ Ͳǣ‫ס‬ ߱ ՜ ǣ‫ס‬

=ቐ

՜ െͻͲ௢ ଵ

ଶ௝ఠାଵ ଵ

՜ Ͳ௢

଴Ǥଵ௝ఠାଵ ଵ

଴Ǥଵ௝ఠାଵ ଵ

߱ ՜ Ͳǣ‫ס‬

՜  Ͳ௢

՜ െͻͲ௢

଴Ǥ଴ଶ௝ఠାଵ ଵ

߱ ՜  ‫ס ׷‬

՜ െͻͲ௢

଴Ǥ଴ଶ௝ఠାଵ

՜ Ͳ

Let's convert the transfer function to the following form: G(j) =

ଶହ

మǤఱ ഘ ଵ଴௝ఠቀି భబ ఠమ ା௝భబቁାଵ

Ö G(s) =

ଶ ୱ൬౩మ ା଴Ǥଵୱାଵ൰ ర

Steps for plotting |G|: (1) Asymptote:  < 1

|G(j)|

2.5 / 

Slope: -1 or -20 dB/decade ȁ‫ܩ‬ሺ݆߱ሻȁఠୀଵ  ൌ ʹǤͷ 216 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

(2) n =2 and  = 0.1 for second-order pole break point:  = 2 slope: -3 or -60 dB/decade

ȁ‫ܩ‬ሺ݆߱ሻȁఠୀଶ  ൌ 

 ൌ ͷ

Steps for plotting ‫ ס‬G(j): (1) for term 1/s the phase starts at -90o and at  = 2 the phase will be -180o (2) for higher frequencies the phase approaches -270o c)

Convert the transfer function to the following form:

for term

ଵ ఠమ

ͲǤͲͳ݆߱ െ ߱ଶ ൅ ͳ ‫ܩ‬ሺ݆߱ሻ ൌ  ߱ଶ െ߱ ଶ ൬ͲǤͲͳ݆߱ െ ൅ ͳ൰ ͻ , slope is -2 (-40 dB/decade) and passes through ȁ‫ܩ‬ሺ݆߱ሻȁఠୀଵ ൌ ͳ

(1) the breakpoint:  = 1 and slope is zero (2) the breakpoint:  = 2 and slope is -2 or -40 dB/decade |G(j)| = 1 = 2 = 0.01 below the asymptote |G(j)| = 1 =

ଵ ଶ

=

ଵ ଴Ǥ଴ଶ

= 50 above the asymptote

Steps for plotting ‫ס‬G:

d)

(1)

phase starts from -180o due to

(2) (3)

‫ ס‬G(j)| =1 = 0 ‫ ס‬G(j)| = 2 = -180o

G(j) =

  మ ଵାଶቀ୨ ቁିቀ ቁ ౤ ౤

Steps for plotting the |G|: (1) Asymptote for (2) Breakpoint:

5, the phase remains at -180o.

(2) As  is a damping ratio, the phase angles must be obtained for various  when 01

28)Usethisparttoconfirmtheresultsfromthepreviouspart. MATLABcode: s = tf('s')

'Generated transfer function:' Ga=2000*(s+0.5)/(s*(s+10)*(s+50)) figure(1) bode(Ga) grid on;

'Generated transfer function:' Gb=25/(s*(s+2.5*s^2+10)) figure(2) bode(Gb) grid on;

'Generated transfer function:' Gc=(s+100*s^2+100)/(s^2*(s+25*s^2+100)) figure(3) bode(Gc) grid on;

218 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

'Generated transfer function:' zeta = 0.2 wn=8 Gd=1/(1+2*zeta*s/wn+(s/wn)^2) figure(4) bode(Gd) grid on;

'Generated transfer function:' t=0.3 'from pade approzimation:' exp_term=pade(exp(-s*t),1) Ge=0.03*(exp_term+1)^2/((exp_term-1)*(3*exp_term+1)*(exp_term+0.5)) figure(5) bode(Ge) grid on;

          Part(a) 219 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

Bode Diagram 60

Magnitude (dB)

40 20 0 -20 -40 -60 0

Phase (deg)

-45 -90 -135 -180 -2

10

-1

0

10

1

10

2

10

10

3

10

Frequency (rad/sec)



   Part(b)

Bode Diagram

Magnitude (dB)

50

0

-50

-100 -90

Phase (deg)

-135 -180 -225 -270 -1

10

0

1

10

10 Frequency (rad/sec)

220 

2

10



AutomaticControlSystems,9thEdition   

Chapter2Solutions

Golnaraghi,Kuo

Part(c)

Bode Diagram 60

Magnitude (dB)

40 20 0 -20 -40 0

Phase (deg)

-45 -90 -135 -180 -1

0

10

10

Frequency (rad/sec)

    Part(d)

221 

1

10



AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

Bode Diagram 10

Magnitude (dB)

0 -10 -20 -30 -40 -50 0

Phase (deg)

-45 -90 -135 -180 -1

0

10

1

10

2

10

10

Frequency (rad/sec)



Part(e)

Bode Diagram 0

Magnitude (dB)

-20 -40 -60 -80 -100

Phase (deg)

-120 0

-90

-180

-270 -1

10

0

10

1

10

Frequency (rad/sec)

222 

2

10

3

10

AutomaticControlSystems,9thEdition  

2-9)

Chapter2Solutions



a)



ª 1 2 0 º « 0 2 3 »  A « » ¬« 1 3 1¼»

ª0 0 º « 1 0» B « » ¬« 0 1 »¼

u (t )

ª u1 (t ) º « u (t ) »  ¬ 2 ¼



b)

݀‫ ݔ‬ሺ‫ݐ‬ሻ ‫ ۍ‬ଵ ‫ې‬ ‫ۑ ݐ݀ ێ‬ െͳ ʹ Ͳ ‫ݔ‬ଵ ሺ‫ݐ‬ሻ ʹ Ͳ ‫ ݑ‬ሺ‫ݐ‬ሻ ‫ݔ݀ێ‬ଶ ሺ‫ݐ‬ሻ‫ ۑ‬ൌ ൥ ʹ ‫ݔ‬ ሺ‫ݐ‬ሻ ቎ ቏ ൅ ൥Ͳ ͳ൩ ൤ ଵ ൨ Ͳ െͳ൩ ଶ ‫ݑ‬ଶ ሺ‫ݐ‬ሻ ‫ۑ ݐ݀ ێ‬ ͵ െͶ െͳ ‫ݔ‬ଷ ሺ‫ݐ‬ሻ Ͳ Ͳ ‫ݔ݀ێ‬ଷ ሺ‫ݐ‬ሻ‫ۑ‬ ‫ے ݐ݀ ۏ‬ 2-10) We know that: 

‫ܩ ۓ‬ሺ‫ݏ‬ሻ ൌ න ݃ሺ‫ݐ‬ሻ݁ ି௦௧ ݀‫ ݐ‬ሺͳሻ ۖ ۖ ଴

௖ା௝

‫۔‬ ͳ ି௦௧ ۖ ۖ݃ሺ‫ݐ‬ሻ ൌ ʹߨ݆ න ݃ሺ‫ݐ‬ሻ݁ ݀‫ ݐ‬ሺʹሻ ‫ە‬ ௖ି௝ Partial integration of equation (1) gives: 



݃ሺ‫ݐ‬ሻ݁ ି௦௧ ͳ ‫ܩ‬ሺ‫ݏ‬ሻ ൌ ቈെ ቉ ൅ න ݃ ሺ‫ݐ‬ሻ݁ ି௦௧ ݀‫ݐ‬ ‫ݏ‬ ‫ݏ‬ ଴ ଴

Ö• ሺ•ሻ ൌ ‰ሺͲሻ ൅ ࣦሼ‰  ሺ–ሻሽ Ö

 ՞ • ሺ•ሻȂ ‰ሺͲሻ

Differentiation of both sides of equation (1) with respect to s gives: 



ି

ି

݀‫ܩ‬ሺ‫ݏ‬ሻ ൌ න െሺ‫ݐ‬ሻ݃ሺ‫ݐ‬ሻ݁ ି௦௧ ݀‫ ݐ‬ൌ න൫െ‫݃ݐ‬ሺ‫ݐ‬ሻ൯݁ ି௦௧ ݀‫ݐ‬ ݀‫ݏ‬ Comparing with equation (1), we conclude that: 223 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

ࣦ ିଵ ቊ

Golnaraghi,Kuo

݀‫ܩ‬ሺ‫ݏ‬ሻ ቋ  ՞  െ‫݃ݐ‬ሺ‫ݐ‬ሻ ݀‫ݏ‬

ௗ௚ሺ௧ሻ

2-11) Let g(t) = ‫ݔ ି׬‬ሺ߬ሻ݀߬ then ‫ݔ‬ሺ‫ݐ‬ሻ ൌ

ௗ௧

Using Laplace transform and differentiation property, we have X(s) = sG(s) Therefore G(s) =

, which means: 

ͳ ࣦ ൝ න ‫ݔ‬ሺ߬ሻ݀߬ൡ  ՞  ܺሺ‫ݏ‬ሻ ‫ݏ‬ ି

2-12) By Laplace transform definition: 

ࣦሼ݃ሺ‫ ݐ‬െ ܶሻ‫ݑ‬ሺ‫ ݐ‬െ ܶሻሽ ൌ න ݃ሺ‫ ݐ‬െ ܶሻ݁ ି௦௧ ݀‫ݐ‬ ்

Now, consider  = t - T, then: 



ࣦሼ݃ሺ‫ ݐ‬െ ܶሻሽ ൌ න ݃ሺ߬ሻ݁ ି௦ሺఛା்ሻ ݀߬ ൌ ݁ ି௦் න ݃ሺ߬ሻ݁ ି௦ఛ ݀߬ ଴

Which means:



2-13) Consider: f(t) = g1(t)

g2(t) = ‫ି׬‬ஶ ݃ଵ ሺ߬ሻ݃ଶ ሺ‫ ݐ‬െ ߬ሻ݀߬

By Laplace transform definition: ஶ

‫ܨ‬ሺ‫ݏ‬ሻ ൌ න ൥ න ݃ଵ ሺ߬ሻ݃ଶ ሺ‫ ݐ‬െ ߬ሻ݀߬൩ ݁ ି௦௧ ݀‫ݐ‬ ିஶ ିஶ ஶ

ൌ න ݃ଵ ሺ߬ሻ ൥ න ݃ଶ ሺ‫ ݐ‬െ ߬ሻ݁ ି௦௧ ݀‫ݐ‬൩ ݀߬ ିஶ

ିஶ

By using time shifting theorem, we have: 224 

AutomaticControlSystems,9thEdition  

Chapter2Solutions ஶ

‫ܨ‬ሺ‫ݏ‬ሻ ൌ න ݃ଵ ሺ߬ሻሾ݁ ି௦ఛ ‫ܩ‬ଶ ሺ‫ݏ‬ሻሿ݀߬ ିஶ ஶ

ൌ ൥ න ݃ଵ ሺ߬ሻ݁ ି௦ఛ ݀߬൩ ‫ܩ‬ଶ ሺ‫ݏ‬ሻ ൌ ‫ܩ‬ଵ ሺ‫ݏ‬ሻ ȉ ‫ܩ‬ଶ ሺ‫ݏ‬ሻ ିஶ

Let's consider g(t) = g1(t) g2(t) ஶ

‫ܩ‬ሺ‫ݏ‬ሻ ൌ න ݃ଵ ሺ‫ݐ‬ሻ݃ଶ ሺ‫ݐ‬ሻ݁ ି௦௧ ݀‫ݐ‬ ଴

By inverse Laplace Transform definition, we have ௖ା௝ஶ

ͳ ݃ଵ ሺ‫ݐ‬ሻ ൌ න ‫ܩ‬ଵ ሺ‫݌‬ሻ݁ ௣௧ ݀‫݌‬ ʹߨ݆ ௖ି௝ஶ

Then ௖ା௝ஶ

‫ܩ‬ሺ‫ݏ‬ሻ ൌ න ‫ܩ‬ଵ ሺ‫݌‬ሻ݀‫ ݌‬න ݂ଶ ሺ‫ݐ‬ሻ݁ ିሺ௦ି௣ሻ௧ ݀‫ݐ‬ ଴

௖ି௝ஶ

Where ஶ

‫ܩ‬ଶ ሺ‫ ݏ‬െ ‫݌‬ሻ ൌ ‫׬‬଴ ݂ଶ ሺ‫ݐ‬ሻ݁ ିሺ௦ି௣ሻ௧ ݀‫ݐ‬ therefore: ௖ା௝ஶ

ͳ ‫ܩ‬ሺ‫ݏ‬ሻ ൌ න ‫ܩ‬ଵ ሺ‫݌‬ሻ‫ܩ‬ଶ ሺ‫ ݌‬െ ‫ݏ‬ሻ݀‫ ݌‬ൌ ଵ ሺ•ሻ ‫ כ‬ଶ ሺ•ሻ ʹߨ݆ ௖ି௝ஶ

2-14) a)

We know that

ࣦቄ

ௗ௚ሺ௧ሻ ௗ௧

ஶ ௗ௚ሺ௧ሻ

ቅ = ‫׬‬଴

ௗ௧

݁ ି௦௧ ݀‫ = ݐ‬sG(s) + g(0)

When s Æ  , it can be written as:

225 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

݈݅݉ න

௦՜ஶ

Chapter2Solutions

݀݃ሺ‫ݐ‬ሻ ି௦௧ ݁ ݀‫ ݐ‬ൌ ݈݅݉ ሾ‫ܩݏ‬ሺ‫ݏ‬ሻ െ ݃ሺͲሻሿ ௦՜ஶ ݀‫ݐ‬

As ஶ ௗ௚ሺ௧ሻ

݈݅݉௫՜ஶ ‫׬‬଴

ௗ௧

݁ ି௦௧ ݀‫ ݐ‬ൌ Ͳ

Therefore: ݈݅݉௦՜ஶ ‫ܩݏ‬ሺ‫ݏ‬ሻ ൌ ݃ሺͲሻ b)

By Laplace transform differentiation property: ஶ

݈݅݉ න ௦՜଴

݀݃ሺ‫ݐ‬ሻ ି௦௧ ݁ ݀‫ ݐ‬ൌ ݈݅݉ሾ‫ܩݏ‬ሺ‫ݏ‬ሻ െ ݃ሺͲሻሿ ௦՜଴ ݀‫ݐ‬

As ஶ

݀݃ሺ‫ݐ‬ሻ ି௦௧ ݀݃ሺ‫ݐ‬ሻ ݈݅݉ න ݁ ݀‫ ݐ‬ൌ න ݀‫ ݐ‬ൌ ݃ሺλሻ െ ݃ሺͲሻ ௦՜଴ ݀‫ݐ‬ ݀‫ݐ‬ ଴

Therefore

݈݅݉ሾ‫ܩݏ‬ሺ‫ݏ‬ሻሿ െ ݃ሺͲሻ ൌ ݃ሺλሻ െ ݃ሺͲሻ ௦՜଴

which means:

݈݅݉ ‫ܩݏ‬ሺ‫ݏ‬ሻ ൌ ݃ሺλሻ ௦՜଴

215) MATLABcode: clear all; syms t s=tf('s')

f1 = (sin(2*t))^2 L1=laplace(f1)

226 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

% f2 = (cos(2*t))^2 = 1-(sin(2*t))^2

Golnaraghi,Kuo

===> L(f2)=1/s-L(f1) ===>

L2= 1/s - 8/s/(s^2+16)

f3 = (cos(2*t))^2 L3=laplace(f3)

'verified as L2 equals L3'

 

^

`

2 MATLABsolutionfor L sin 2t is:

8/s/(s^2+16)  

^

`

^

`

2 2 Calculating L cos 2t basedon L sin 2t 

^

`

L cos 2 2t =(s^^3+8s)/(s^4+16s^2) 

^

`

2 verifying L cos 2t :

(8+s^2)/s/(s^2+16) 216)(a) 

 G ( s )

(d) 

 G ( s )



5

s  5  1 2

s 4

2



(b)



 G ( s )



(e)

s

4s 2

4

f

 



(c)



G ( s)

¦e



1 s2

1 e

k 0

227

 G ( s )

1

kT ( s  5 )







 T ( s 5 )



4 2

s  4s  8



AutomaticControlSystems,9thEdition Chapter2Solutions Golnaraghi,Kuo   217)Note:%section (e) requires assignment of T and a numerical loop calculation  MATLABcode: clear all; syms t u

f1 = 5*t*exp(-5*t) L1=laplace(f1)

f2 = t*sin(2*t)+exp(-2*t) L2=laplace(f2)

f3 = 2*exp(-2*t)*sin(2*t) L3=laplace(f3)

f4 = sin(2*t)*cos(2*t) L4=laplace(f4)

%section (e) requires assignment of T and a numerical loop calculation

(a) g (t )

5te 5t u s (t )



Answer:5/(s+5)^2 (b) g ( t ) ( t sin 2t  e 2t )us ( t )  Answer:4*s/(s^2+4)^2+1/(s+2) (c) g ( t ) 2e 2t sin 2t u s (t )  Answer:4/(s^2+4*s+8) 

 228



AutomaticControlSystems,9thEdition   (d) g ( t ) sin 2t cos 2t u s (t ) 

Chapter2Solutions

Golnaraghi,Kuo

Answer:2/(s^2+16) f

(e) g ( t )

¦e

5 kT

G ( t  kT ) 

whereG(t)=unitimpulsefunction

k 0

%section (e) requires assignment of T and a numerical loop calculation

218(a) u s (t )  2u s (t  1)  2u s ( t  2)  2u s (t  3)  

g (t )

1

G(s)





s

 gT (t ) GT ( s )

1 e

1  2e  s  2e 2 s  2e 3s  

s 1 e

u s (t )  2u s (t  1)  u s (t  2) 1 s

1  2e  s  e 2 s

1 s

 g ( t )

1  e  s

¦



2

f

gT ( t  2 k )u s ( t  2 k )

s

0dtd2

f



s

1

¦s

G( s)

k 0

(1  e

 s 2 2 ks

) e

1 e

s

s(1  e

k 0

s

 )

(b) 



 g (t )

 G ( s )

2tu s (t )  4(t  0.5)u s (t  0.5)  4(t  1)u s (t  1)  4(t  1.5)u s (t  1.5)   

2 s

2

1  2e

0.5 s

 2e

s

 2e

1.5 s

0.5 s    0.5 s 2 s 1  e

2 1 e



 gT ( t ) 2tu s ( t )  4( t  0.5)u s ( t  0.5)  2( t  1)u s ( t  1)



 GT ( s )

2 s

2

1  2e0.5 s  e s

2 s

2

1  e0.5 s

f



 g (t )

¦ g T (t  k )u s (t  k ) k 0

2

f

G ( s)

0 d t d 1



¦ s2 2

1 e

k 0

0.5 s 2

e

 ks

0.5s  2 0.5 s s 1  e 2 1 e



219) 

 g ( t )

( t  1)u s ( t )  ( t  1)u s ( t  1)  2u s ( t  1)  ( t  2 )u s ( t  2)  ( t  3)u s ( t  3)  u s ( t  3) 

229 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

 

 1

 G ( s )

s

2

1  e  s  e 2 s  e 3s  s 1  2e  s  e 3s  1

2-20) ்

ࣦሼ݂ሺ‫ݐ‬ሻሽ ൌ  න ݂ሺ‫ݐ‬ሻ݁

ି௦௧

் ଶ

݀‫ ݐ‬ൌ  න ݁ ି௦௧ ݀‫ ݐ‬൅  න ሺെͳሻ݁ ି௦௧ ݀‫ݐ‬ ଴

்௦

்௦

் ଶ

்௦ ଶ ͳ െ ݁ ି ଶ ݁ ି்௦ െ ݁ ି ଶ ͳ ൌ ൅ ൌ ൤ͳ െ ݁ ି ଶ ൨ ‫ݏ‬ ‫ݏ‬ ‫ݏ‬

2-21) ஶ

ࣦሼ݂ሺ‫ݐ‬ሻሽ ൌ  න ݂ሺ‫ݐ‬ሻ݁ ଴

ି௦௧

ଶ ݁ ି௦௧ ݁ ି௦௧ ݀‫ ݐ‬ൌ  න ଶ ݀‫ ݐ‬െ  න ଶ ݀‫ݐ‬ ௅ ‫ܮ‬ ଴ ‫ܮ‬ ଶ௅

݁ ି௦௧ ݁ ି௦௧ ͳ െ ݁ ି௅௧ ݁ ିଶ௅௧ െ ݁ ି௅௧ ൌ ቈെ ଶ ቉ ൅ ቈ ଶ ቉ ൌ ൅ ‫ ܮݏ‬଴ ‫ ܮݏ‬௅ ‫ܮݏ‬ଶ ‫ܮݏ‬ଶ ͳ ൌ ଶ ሺͳ െ ݁ ି௅௧ ሻଶ ‫ܮݏ‬

2-22) ࣦ ቄ ࣦቄ ࣦቄ

ௗ య ௬ሺ௧ሻ ௗ௧ మ ௗ మ ௬ሺ௧ሻ ௗ௧ మ ௗ௬ሺ௧ሻ ௗ௧ మ

ቅ ൌ  ‫ ݏ‬ଷ ܻሺ‫ݏ‬ሻ െ  ‫ ݏ‬ଶ ‫ ݕ‬ᇱᇱ ሺͲሻ െ ‫ ݕݏ‬ᇱ ሺͲሻ െ ‫ݕ‬ሺͲሻ ቅ ൌ  ‫ ݏ‬ଶ ܻሺ‫ݏ‬ሻ െ ‫ ݕݏ‬ᇱ ሺͲሻ െ ‫ݕ‬ሺͲሻ

ቅ ൌ ‫ܻݏ‬ሺ‫ݏ‬ሻ െ ‫ݕ‬ሺͲሻ

ࣦሼെ݁ ି௧ ‫ݑ‬௦ ሺ‫ݐ‬ሻሽ ൌ  െ

ଵ ௦ାଵ

Ö ‫ ݏ‬ଷ ܻሺ‫ݏ‬ሻ ൅ ‫ ݏ‬െ ‫ ݏ‬൅ ʹ‫ ݏ‬ଶ ܻሺ‫ݏ‬ሻ ൅ ʹ‫ ݏ‬െ ʹ െ ‫ܻݏ‬ሺ‫ݏ‬ሻ ൅ ʹܻሺ‫ݏ‬ሻ ൌ  െ

230 

ଵ ௦ାଵ

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Ö ሺ‫ ݏ‬ଷ ൅ ʹ‫ ݏ‬ଶ െ ‫ ݏ‬൅ ʹሻܻሺ‫ݏ‬ሻ ൅ ʹ‫ ݏ‬െ ʹ ൌ  െ

ଵ ௦ାଵ

ଶ௦ మ ିଷ

Ö ܻሺ‫ݏ‬ሻ ൌ ሺ௦ାଶሻሺ௦మ

ାଵሻሺ௦ାଵሻ

223

MATLABcode: clear all; syms t u s x1 x2 Fs

f1 = exp(-2*t) L1=laplace(f1)/(s^2+5*s+4);

Eq2=solve('s*x1=1+x2','s*x2=-2*x1-3*x2+1','x1','x2') f2_x1=Eq2.x1 f2_x2=Eq2.x2

f3=solve('(s^3-s+2*s^2+s+2)*Fs=-1+2-(1/(1+s))','Fs')

 HereisthesolutionprovidedbyMATLAB:  Part(a):F(s)=1/(s+2)/(s^2+5*s+4)  Part(b):X1(s)=(4+s)/(2+3*s+s^2) X2(s)=(s2)/(2+3*s+s^2)  Part(c):F(s)=s/(1+s)/(s^3+2*s^2+2) 

231 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition   224)

Chapter2Solutions

MATLABcode:  clear all; syms s Fs f3=solve('s^2*Fs-Fs=1/(s-1)','Fs') Answer from MATLAB: Y(s)=1/(s-1)/(s^2-1)

225) MATLABcode: clear all; syms s CA1 CA2 CA3 v1=1000; v2=1500; v3=100; k1=0.1 k2=0.2 k3=0.4

f1='s*CA1=1/v1*(1000+100*CA2-1100*CA1-k1*v1*CA1)' f2='s*CA2=1/v2*(1100*CA1-1100*CA2-k2*v2*CA2)' f3='s*CA3=1/v3*(1000*CA2-1000*CA3-k3*v3*CA3)' Sol=solve(f1,f2,f3,'CA1','CA2','CA3') CA1=Sol.CA1 CA3=Sol.CA2 CA4=Sol.CA3

 232 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition   SolutionfromMATLAB:

Chapter2Solutions

Golnaraghi,Kuo

CA1(s)= 1000*(s*v2+1100+k2*v2)/(1100000+s^2*v1*v2+1100*s*v1+s*v1*k2*v2+1100*s*v2+1100*k2*v2+k1*v1*s*v2+ 1100*k1*v1+k1*v1*k2*v2) CA3(s)= 1100000/(1100000+s^2*v1*v2+1100*s*v1+s*v1*k2*v2+1100*s*v2+1100*k2*v2+k1*v1*s*v2+1100*k1*v1+k1* v1*k2*v2) CA4(s)= 1100000000/(1100000000+1100000*s*v3+1000*s*v1*k2*v2+1100000*s*v1+1000*k1*v1*s*v2+1000*k1*v1*k 2*v2+1100*s*v1*k3*v3+1100*s*v2*k3*v3+1100*k2*v2*s*v3+1100*k2*v2*k3*v3+1100*k1*v1*s*v3+1100*k1 *v1*k3*v3+1100000*k1*v1+1000*s^2*v1*v2+1100000*s*v2+1100000*k2*v2+1100000*k3*v3+s^3*v1*v2*v3+ 1100*s^2*v1*v3+1100*s^2*v2*v3+s^2*v1*v2*k3*v3+s^2*v1*k2*v2*v3+s*v1*k2*v2*k3*v3+k1*v1*s^2*v2*v3 +k1*v1*s*v2*k3*v3+k1*v1*k2*v2*s*v3+k1*v1*k2*v2*k3*v3) 2-26) (a) 

1

G( s)

3s

(b) 

G( s)



1



2( s  2)

1

1

1 2t 1 3t  e  e 3 2 3

g (t )

3( s  3)

t t 0



2.5

5



s  1 ( s  1)

2



2.5

g (t )

s3

2.5e

t

 5te

t

 2.5e

3t

t t 0

(c) 

G(s)

50 s

20



s 1



30 s  20 2

s 4

e

s

>50  20e  (t 1)  30 cos 2(t  1)  5 sin 2(t  1) @ us (t  1) 

g (t )

(d) 

G( s)

1 s





s 1

1

2

s  s2

g (t )

1  1.069e

(e)

g (t )

0.5t

s



1 2

s  s2



s 2

s  s2



TakingtheinverseLaplacetransform,

>sin 1.323t  sin 1.323t  69.3o @ 2 t

0.5t e

1 e

t t 0

(f)Try using MATLAB >> b=num*2

233 

0.5t

1.447 sin 1.323t  cos1.323t t t 0 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

b= 2

2

2

>>num = 1

1

1

>> denom1=[1 1] denom1 = 1

1

>> denom2=[1 5 5] denom2 = 1

5

5

>> num*2 ans = 2

2

2

>> denom=conv([1 0],conv(denom1,denom2)) denom = 1

6

10

5

0

5

0

>> b=num*2 b= 2

2

2

>> a=denom a= 1

6

10

>> [r, p, k] = residue(b,a) r= -0.9889 234 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

2.5889 -2.0000 0.4000 p= -3.6180 -1.3820 -1.0000 0 k=[] If there are no multiple roots, then

The number of poles n is r r1 r  2  ...  n  k s  p1 s  p2 s  pn

b a

In this case, p1 and k are zero. Hence, 0.4 0.9889 2.5889 2    s s  3.6180 s  1.3820 s  1

G ( s)

0.4  0.9889e 3.618t  1.3820e 2.5889t  2e  t

g (t ) (g) ‫ܩ‬ሺ‫ݏ‬ሻ ൌ ሺ

ଶ ௦ାଵሻሺ௦ାଶሻ

ଶ ௦ାଵ

ଶ ௦ାଶ

ଶ௘ షೞ ௦ାଵ

ଶ௘ షೞ ௦ାଵ

Ö ࣦ ିଵ ሼ ሺ•ሻሽ ൌ ʹ‡ି୲ െ ʹ‡ିଶ୲ ൅ ʹ‡ିሺ୲ିଵሻ ‫ݑ‬ሺ‫ ݐ‬െ ͳሻ (h)

‫ ܩ‬ሺ‫ݏ‬ሻ ൌ

ଶ௦ାଵ ሺ௦ାଵሻሺ௦ାଶሻሺ௦ାଷሻ

ൌെ

భ మ

௦ାଵ

ଷ ௦ାଶ

Ö ࣦ ିଵ ሼ‫ܩ‬ሺ‫ݏ‬ሻሽ ൌ  െ ݁ ି௧ ൅ ͵݁ ିଶ௧ െ ݁ ିଷ௧

235 

ହ ଶሺ௦ାଷሻ

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

‫ ܩ‬ሺ‫ݏ‬ሻ ൌ

(i)

Ö

ଷ௦ య ାଵ଴௦ మ ା଼௦ାହ ௦ యర ାହ௦ య ା଻௦ మ ାହ௦ା଺

Chapter2Solutions

ଵ ௦ାଶ

ଵ ௦ାଷ

Golnaraghi,Kuo

௦ ௦ మ ାଵ

ࣦ ିଵ ሼ‫ܩ‬ሺ‫ݏ‬ሻሽ ൌ  ݁ ିଶ௧ ൅  ݁ ିଷ௧ ൅ ܿ‫ݐݏ݋‬

227 MATLABcode:  clear all; syms s

f1=1/(s*(s+2)*(s+3)) F1=ilaplace(f1)

f2=10/((s+1)^2*(s+3)) F2=ilaplace(f2)

f3=10*(s+2)/(s*(s^2+4)*(s+1))*exp(-s) F3=ilaplace(f3)

f4=2*(s+1)/(s*(s^2+s+2)) F4=ilaplace(f4)

f5=1/(s+1)^3 F5=ilaplace(f5)

f6=2*(s^2+s+1)/(s*(s+1.5)*(s^2+5*s+5)) F6=ilaplace(f6)

s=tf('s') f7=(2+2*s*pade(exp(-1*s),1)+4*pade(exp(-2*s),1))/(s^2+3*s+2) %using Pade command for exponential term

236 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

[num,den]=tfdata(f7,'v') %extracting the polynomial values syms s f7n=(-2*s^3+6*s+12)/(s^4+6*s^3+13*s^2+12*s+4) %generating sumbolic function for ilaplace F7=ilaplace(f7n)

f8=(2*s+1)/(s^3+6*s^2+11*s+6) F8=ilaplace(f8)

f9=(3*s^3+10^s^2+8*s+5)/(s^4+5*s^3+7*s^2+5*s+6) F9=ilaplace(f9)

SolutionfromMATLABfortheInverseLaplacetransforms:  Part(a):

G ( s)

1 s( s  2)( s  3) 

G(t)=1/2*exp(2*t)+1/3*exp(3*t)+1/6

Tosimplify:

symst

digits(3)

vpa(1/2*exp(2*t)+1/3*exp(3*t)+1/6)

ans=.500*exp(2.*t)+.333*exp(3.*t)+.167

Part(b):

G ( s)

10 ( s  1) 2 ( s  3)



G(t)=5/2*exp(3*t)+5/2*exp(t)*(1+2*t) 237 

AutomaticControlSystems,9thEdition   Part(c):

G( s)

100( s  2) s( s 2  4 )( s  1)

Chapter2Solutions

Golnaraghi,Kuo

e s



G(t)=Step(t1)*(4*cos(t1)^2+2*sin(t1)*cos(t1)+4*exp(1/2*t+1/2)*cosh(1/2*t1/2)4*exp(t+1)cos(2*t2) 2*sin(2*t2)+5)

Part(d):

G ( s)

2( s  1) s( s 2  s  2 ) 

G(t)=1+1/7*exp(1/2*t)*(7*cos(1/2*7^(1/2)*t)+3*7^(1/2)*sin(1/2*7^(1/2)*t))

Tosimplify:

symst

digits(3)

vpa(1+1/7*exp(1/2*t)*(7*cos(1/2*7^(1/2)*t)+3*7^(1/2)*sin(1/2*7^(1/2)*t)))

ans=1.+.143*exp(.500*t)*(7.*cos(1.32*t)+7.95*sin(1.32*t))

Part(e):



G ( s)

1 ( s  1) 3 

G(t)=1/2*t^2*exp(t)

Part(f):

G( s)

2( s 2  s  1) s( s  15 . )( s 2  5s  5) 

G(t)=4/15+28/3*exp(3/2*t)16/5*exp(5/2*t)*(3*cosh(1/2*t*5^(1/2))+5^(1/2)*sinh(1/2*t*5^(1/2)))

Part(g):G ( s )

2  2 se  s  4e 2 s s 2  3s  2 

238 

AutomaticControlSystems,9thEdition   G(t)=2*exp(2*t)*(7+8*t)+8*exp(t)*(2+t)

Part(h):

G ( s)

Chapter2Solutions

Golnaraghi,Kuo

2s  1 s  6 s 2  11s  6  3

G(t)=1/2*exp(t)+3*exp(2*t)5/2*exp(3*t)

 Part(i):

G ( s)

3s 3  10 s 2  8s  5 s 4  5 s 3  7 s 2  5s  6 

G(t)= 7*exp(2*t)+10*exp(3*t) 1/10*ilaplace(10^(2*s)/(s^2+1)*s,s,t)+1/10*ilaplace(10^(2*s)/(s^2+1),s,t)+1/10*sin(t)*(10+dirac(t)*(exp( 3*t)+2*exp(2*t)))

239 

AutomaticControlSystems,9thEdition  

2-28)

ୢ୶ሺ୲ሻ ୢ୲

Chapter2Solutions

Golnaraghi,Kuo

ൌ šሺ–ሻ ൅ —ሺ–ሻ

a)

݀‫ ݔ‬ሺ‫ݐ‬ሻ ‫ ۓ‬ଵ ൌ  െ‫ݔ‬ଶ ሺ‫ݐ‬ሻ ൅ ʹ‫ݔ‬ଷ ሺ‫ݐ‬ሻ െ  ‫ݑ‬ଶ ሺ‫ݐ‬ሻ ۖ ݀‫ݐ‬ ݀‫ݔ‬ଶ ሺ‫ݐ‬ሻ ൌ ‫ݔ‬ଵ ሺ‫ݐ‬ሻ ൅  ‫ݔ‬ଷ ሺ‫ݐ‬ሻ ൅  ‫ݑ‬ଵ ሺ‫ݐ‬ሻ ݀‫ݐ‬ ‫۔‬ ۖ݀‫ݔ‬ଷ ሺ‫ݐ‬ሻ ሺ‫ݐ‬ሻ െ ʹ‫ݔ‬ଶ ሺ‫ݐ‬ሻ ൅  ‫ݔ‬ଷ ሺ‫ݐ‬ሻ ‫ ݐ݀ ە‬ൌ  െ‫ݔ‬ଵ b)

݀‫ ݔ‬ሺ‫ݐ‬ሻ ‫ ۓ‬ଵ ൌ ͵‫ݔ‬ଵ ሺ‫ݐ‬ሻ ൅ ‫ݔ‬ଶ ሺ‫ݐ‬ሻ െ ʹ‫ݔ‬ଷ ሺ‫ݐ‬ሻ െ ‫ݑ‬ሺ‫ݐ‬ሻ ۖ ݀‫ݐ‬ ݀‫ݔ‬ଶ ሺ‫ݐ‬ሻ ൌ െ‫ݔ‬ଵ ሺ‫ݐ‬ሻ ൅ ʹ‫ݔ‬ଶ ሺ‫ݐ‬ሻ ൅ ʹ‫ݔ‬ଷ ሺ‫ݐ‬ሻ ݀‫ݐ‬ ‫۔‬ ݀‫ݔ‬ଷ ሺ‫ݐ‬ሻ ۖ ൌ  ‫ݔ‬ଷ ሺ‫ݐ‬ሻ ൅ ʹ‫ݑ‬ሺ‫ݐ‬ሻ ‫ە‬ ݀‫ݐ‬

2-29) (a)





 3s  1

Y (s) 3

s  2 s  5s  6

R( s)



(c)





e)

2











(b)







R( s)





Y (s)

s ( s  2)

R( s)

s  10 s  2 s  s  2

4

3

Y (s)

2



5 4

2

s  10 s  s  5



(d) 

Y (s) R( s)

1  2e 2

s

2s  s  5



‫ݔ‬ሺ‫ݐ‬ሻ  ൌ ‫ݕ‬ሺ‫ ݐ‬൅ ͳሻ Ö

ௗ మ ௫ሺ௧ሻ ௗ௧ మ

ସௗ௫ሺ௧ሻ ௗ௧

൅ ͷ‫ݔ‬ሺ‫ݐ‬ሻ ൌ

ௗ௥ሺ௧ሻ ௗ௧

൅ ʹ‫ݎ‬ሺ‫ݐ‬ሻ ൅ ʹ ‫ି׬‬ஶ ‫ݎ‬ሺ߬ሻ݀ ߬

By using Laplace transform, we have:

‫ ݏ‬ଶ ܺሺ‫ݏ‬ሻ ൅ Ͷ‫ܺݏ‬ሺ‫ݏ‬ሻ ൅ ͷܺሺ‫ݏ‬ሻ ൌ ‫ܴݏ‬ሺ‫ݏ‬ሻ ൅ ʹܴሺ‫ݏ‬ሻ ൅ As ሺ•ሻ ൌ ‡ିୱ ሺ•ሻ, then

240 

ܴሺ‫ݏ‬ሻ ‫ݏ‬

AutomaticControlSystems,9thEdition  

Chapter2Solutions

ሺ‫ ݏ‬ଶ ൅ Ͷ‫ ݏ‬൅ ‫ݐ‬ሻ݁ ି௦ ܻሺ‫ݏ‬ሻ ൌ

Golnaraghi,Kuo

‫ ݏ‬ଶ ൅ ʹ‫ ݏ‬൅ ͳ ܴሺ‫ݏ‬ሻ ‫ݏ‬

Then: ௒ሺ௦ሻ ோሺ௦ሻ

f)

ሺ௦ାଵሻమ ௘ ೞ ௦ሺ௦ మ ାସ௦ା௦ሻ

By using Laplace transform we have:

ʹ ൬‫ ݏ‬ଷ ൅ ʹ‫ ݏ‬ଶ ൅ ‫ ݏ‬൅ ʹ ൅ ൰ ܻሺ‫ݏ‬ሻ ൌ  ‫ି ݁ݏ‬௦ ܴሺ‫ݏ‬ሻ ൅ ʹ݁ ି௦ ܴሺ‫ݏ‬ሻ ‫ݏ‬ As a result: ௒ሺ௦ሻ ோሺ௦ሻ

௦ሺ௦ାଶሻ௘ షೞ ௦ ర ାଶ௦ య ା௦ మ ାଶ௦ାଶ

230) AftertakingtheLaplacetransform,theequationwassolvedintermsofY(s),andconsecutivelywasdividedby inputR(s)toobtainY(s)/R(s):

MATLABcode: clear all; syms Ys Rs s

sol1=solve('s^3*Ys+2*s^2*Ys+5*s*Ys+6*Ys=3*s*Rs+Rs','Ys') Ys_Rs1=sol1/Rs

sol2=solve('s^4*Ys+10*s^2*Ys+s*Ys+5*Ys=5*Rs','Ys') Ys_Rs2=sol2/Rs

sol3=solve('s^3*Ys+10*s^2*Ys+2*s*Ys+2*Ys/s=s*Rs+2*Rs','Ys') Ys_Rs3=sol3/Rs

sol4=solve('2*s^2*Ys+s*Ys+5*Ys=2*Rs*exp(-1*s)','Ys') Ys_Rs4=sol4/Rs

241 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

%Note: Parts E&F are too complicated with MATLAB, Laplace of integral is not executable in MATLAB.....skipped

MATLABAnswers: Part(a):

Y(s)/R(s)=(3*s+1)/(5*s+6+s^3+2*s^2);

Part(b):

Y(s)/R(s)=5/(10*s^2+s+5+s^4)

Part(c):

Y(s)/R(s)=(s+2)*s/(2*s^2+2+s^4+10*s^3)

Part(d):

Y(s)/R(s)=2*exp(s)/(2*s^2+s+5)

%Note: Parts E&F are too complicated with MATLAB, Laplace of integral is not executable in MATLAB.....skipped

231 MATLABcode: clear all; s=tf('s')

%Part a Eq=10*(s+1)/(s^2*(s+4)*(s+6)); [num,den]=tfdata(Eq,'v'); [r,p] = residue(num,den)

%Part b Eq=(s+1)/(s*(s+2)*(s^2+2*s+2)); [num,den]=tfdata(Eq,'v'); [r,p] = residue(num,den)

%Part c Eq=5*(s+2)/(s^2*(s+1)*(s+5)); [num,den]=tfdata(Eq,'v');

242 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

[r,p] = residue(num,den)

%Part d Eq=5*(pade(exp(-2*s),1))/(s^2+s+1); %Pade approximation oreder 1 used [num,den]=tfdata(Eq,'v'); [r,p] = residue(num,den)

%Part e Eq=100*(s^2+s+3)/(s*(s^2+5*s+3)); [num,den]=tfdata(Eq,'v'); [r,p] = residue(num,den)

%Part f Eq=1/(s*(s^2+1)*(s+0.5)^2); [num,den]=tfdata(Eq,'v'); [r,p] = residue(num,den)

%Part g Eq=(2*s^3+s^2+8*s+6)/((s^2+4)*(s^2+2*s+2)); [num,den]=tfdata(Eq,'v'); [r,p] = residue(num,den)

%Part h Eq=(2*s^4+9*s^3+15*s^2+s+2)/(s^2*(s+2)*(s+1)^2); [num,den]=tfdata(Eq,'v'); [r,p] = residue(num,den)

Thesolutionsarepresentedintheformoftwovectors,randp,whereforeachcase,thepartialfraction expansionisequalto: 243 

AutomaticControlSystems,9thEdition  

b( s ) a( s)

Chapter2Solutions

r r1 r  2  ...  n s  p1 s  p 2 s  pn 

Followingarerandpvectorsforeachpart:  Part(a):  r=0.6944 0.9375 0.2431 0.4167  p=6.0000 4.0000 0 0  Part(b):  r=0.2500 0.25000.0000i 0.2500+0.0000i 0.2500  p=2.0000 1.0000+1.0000i 244 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition   1.00001.0000i

Chapter2Solutions

0  Part(c):  r=0.1500 1.2500 1.4000 2.0000  p=5 1 0 0  Part(d):  r=10.0000 5.00000.0000i 5.0000+0.0000i  p=1.0000 0.5000+0.8660i 0.50000.8660i  245 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition   

Chapter2Solutions

Part(e):  r=110.9400 110.9400 100.0000  p=4.3028 0.6972 0  Part(f):  r=0.2400+0.3200i 0.24000.3200i 4.4800 1.6000 4.0000  p=0.0000+1.0000i 0.00001.0000i 0.5000 0.5000 0  246 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition   Part(g):

Chapter2Solutions

 r=0.1000+0.0500i 0.10000.0500i 1.1000+0.3000i 1.10000.3000i  p=0.0000+2.0000i 0.00002.0000i 1.0000+1.0000i 1.00001.0000i   Part(h):  r=5.0000 1.0000 9.0000 2.0000 1.0000 p=2.0000 1.0000 1.0000 0 0 247 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition   232)

Chapter2Solutions

MATLABcode: clear all; syms s

%Part a Eq=10*(s+1)/(s^2*(s+4)*(s+6)); ilaplace(Eq)

%Part b Eq=(s+1)/(s*(s+2)*(s^2+2*s+2)); ilaplace(Eq)

%Part c Eq=5*(s+2)/(s^2*(s+1)*(s+5)); ilaplace(Eq)

%Part d exp_term=(-s+1)/(s+1) %pade approcimation Eq=5*exp_term/((s+1)*(s^2+s+1)); ilaplace(Eq)

%Part e Eq=100*(s^2+s+3)/(s*(s^2+5*s+3)); ilaplace(Eq)

%Part f Eq=1/(s*(s^2+1)*(s+0.5)^2); ilaplace(Eq)

248 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

%Part g Eq=(2*s^3+s^2+8*s+6)/((s^2+4)*(s^2+2*s+2)); ilaplace(Eq)

%Part h Eq=(2*s^4+9*s^3+15*s^2+s+2)/(s^2*(s+2)*(s+1)^2); ilaplace(Eq)

  MATLABAnswers:  Part(a):  G(t)=15/16*exp(4*t)+25/36*exp(6*t)+35/144+5/12*t Tosimplify:

symst

digits(3)

vpa(15/16*exp(4*t)+25/36*exp(6*t)+35/144+5/12*t) ans=.938*exp(4.*t)+.694*exp(6.*t)+.243+.417*tPart(b):  G(t)=1/4*exp(2*t)+1/41/2*exp(t)*cos(t)  Part(c): G(t)=5/4*exp(t)7/5+3/20*exp(5*t)+2*t

249 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition   

Chapter2Solutions

Part(d):  G(t)=5*exp(1/2*t)*(cos(1/2*3^(1/2)*t)+3^(1/2)*sin(1/2*3^(1/2)*t))+5*(1+2*t)*exp(t)  Part(e):  G(t)=100800/13*exp(5/2*t)*13^(1/2)*sinh(1/2*t*13^(1/2))  Part(f):  G(t)=4+12/25*cos(t)16/25*sin(t)8/25*exp(1/2*t)*(5*t+14)  Part(g):  G(t)=1/5*cos(2*t)1/10*sin(2*t)+1/5*(11*cos(t)3*sin(t))*exp(t)  Part(h):  G(t)=2+t+5*exp(2*t)+(1+9*t)*exp(t)

250 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

2-33)(a)Polesareat s 0,  15 .  j16583 . ,  15 .  j16583 .  

Onepolesats=0.Marginallystable. Twopoleson jZ axis.Marginallystable.

(b)Polesareat s

5,  j 2 , j 2  

(c)Polesareat s

0.8688, 0.4344  j 2.3593, 0.4344  j 2.3593TwopolesinRHP.Unstable.

(d)Polesareat s

5,  1  j ,  1  j  

(e)Polesareat

s

(f)Polesareat s

22.8487 r j 22.6376, 213487 . r j 22.6023 









AllpolesintheLHP.Stable.

13387 . , 16634 .  j 2.164, 16634 .  j 2.164  TwopolesinRHP.Unstable.

TwopolesinRHP.Unstable.



2-34) Find the Characteristic equations and then use the roots command. (a) p= [ 1 3 5 0] sr = roots(p)

p=

1

3

5

0

sr = 0 -1.5000 + 1.6583i -1.5000 - 1.6583i

p=conv([1 5],[1 0 2])

(b)

sr = roots(p) p= 1

5

2

10

251 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

sr = -5.0000 0.0000 + 1.4142i 0.0000 - 1.4142i

(c) >> roots([1 5 5])

ans =

-3.6180 -1.3820

(d) roots(conv([1 5],[1 2 2])) ans =

-5.0000 -1.0000 + 1.0000i -1.0000 - 1.0000i (e) roots([1 -2 3 10]) ans =

1.6694 + 2.1640i 1.6694 - 2.1640i -1.3387

252 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

(f) roots([1 3 50 1 10^6]) -22.8487 +22.6376i -22.8487 -22.6376i 21.3487 +22.6023i 21.3487 -22.6023i

Alternatively Problem234 MATLABcode: % Question 2-34, clear all; s=tf('s')

%Part a Eq=10*(s+2)/(s^3+3*s^2+5*s); [num,den]=tfdata(Eq,'v'); roots(den)

%Part b Eq=(s-1)/((s+5)*(s^2+2)); [num,den]=tfdata(Eq,'v'); roots(den)

%Part c Eq=1/(s^3+5*s+5); [num,den]=tfdata(Eq,'v'); roots(den)

253 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

%Part d Eq=100*(s-1)/((s+5)*(s^2+2*s+2)); [num,den]=tfdata(Eq,'v'); roots(den)

%Part e Eq=100/(s^3-2*s^2+3*s+10); [num,den]=tfdata(Eq,'v'); roots(den)

%Part f Eq=10*(s+12.5)/(s^4+3*s^3+50*s^2+s+10^6); [num,den]=tfdata(Eq,'v'); roots(den)

  MATLABanswer:   Part(a)   0 1.5000+1.6583i 1.50001.6583i  Part(b)   5.0000 254 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition   0.0000+1.4142i

Chapter2Solutions

0.00001.4142i Part(c)   0.4344+2.3593i 0.43442.3593i 0.8688   Part(d)   5.0000 1.0000+1.0000i 1.00001.0000i   Part(e)   1.6694+2.1640i 1.66942.1640i 1.3387   Part(f)  

255 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition   22.8487+22.6376i

Chapter2Solutions

Golnaraghi,Kuo

22.848722.6376i 21.3487+22.6023i 21.348722.6023i

2-35) (a) s 3  25 s 2  10 s  450 0 

Roots: 25.31, 0.1537  j 4.214, 0.1537  4.214 



 



RouthTabulation: s

3

1

10

s

2

25

450

s

1

s

0



250  450 25

8





Twosignchangesinthefirstcolumn.TworootsinRHP.

0

450

 3

2

(b) s  25 s  10 s  50

Roots: 24.6769,  0.1616  j1.4142,  0.1616  j1.4142 

0 

 



RouthTabulation: s

3

1

10

s

2

25

50

s

1

s

0



250  50

 8



Nosignchangesinthefirstcolumn.NorootsinRHP.

0

25 50

 (c) s 3  25 s 2  250 s  10 0  





RouthTabulation:

Roots: 0.0402,  12.48  j 9.6566,  j 9.6566 

256 

AutomaticControlSystems,9thEdition  



s

3

1

250

s

2

25

10

s

1

s

0





6250  10

249.6

Chapter2Solutions



Golnaraghi,Kuo

Nosignchangesinthefirstcolumn.NorootsinRHP.

0

25 10

 4

3

2

(d) 2 s  10 s  5.5 s  5.5 s  10 





RouthTabulation:



s

4

2

5.5

 s

3

10

5.5

s

2

55  11

4.4

0 Roots: 4.466,  1116 . , 0.2888  j 0.9611, 0.2888  j 0.9611

10













10

10 s



4.4

 s



24.2  100

1

0

75.8





10

Twosignchangesinthefirstcolumn.TworootsinRHP.



(e) s 6  2 s 5  8 s 4  15 s 3  20 s 2  16 s  16 0 Roots: 1.222 r j 0.8169, 0.0447 r j1153 . , 0.1776 r j 2.352  





RouthTabulation:



s

6

1

8

20

s

5

2

15

16

s

4



s

3

16  15

0.5

40  16

2

2

 33

 48

16

 12



257 

AutomaticControlSystems,9thEdition  



s

2

 s

1

396  24

11.27

33 5411 .  528

. 116

11.27 s



0

Chapter2Solutions

Golnaraghi,Kuo

16 0







0

Foursignchangesinthefirstcolumn.FourrootsinRHP.

 4

3

2

(f) s  2 s  10 s  20 s  5 





RouthTabulation:



s

4

1

10

s

3

2

20

s

2



20  20

0

Roots: 0.29,  1788 . , 0.039  j 3105 . , 0.039  j 3105 . 



5

 0

5

2 s

2

s

1

s

0

H

Replace 0 in last row by H

5





20H  10

H



#

10

H  



Twosignchangesinfirstcolumn.TworootsinRHP.

5

(g) s8

1

8

20

16

0

s7

2

12

16

0

0

s6

2

12

16

0

0

s5

0

0

0

0

0

 ‫ܣ‬ሺ‫ݏ‬ሻ ൌ ʹ‫ ଺ ݏ‬൅ ͳʹ‫ ݏ‬ହ ൅ ͳ͸‫ ݏ‬ସ

݀‫ܣ‬ሺ‫ݏ‬ሻ ൌ ͳʹ‫ ݏ‬ହ ൅ ͸Ͳ‫ ݏ‬ସ ൅ ͸Ͷ‫ ݏ‬ଷ ݀‫ݏ‬ 258 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

s5

12

60

64

0

s4

2

ͳ͸ ͵

0

0

s3

28

64

0

0

s2

0.759

0

0

0

s1

28

0

s0

0

2-36) Use MATLAB roots command a) roots([1 25 10 450]) ans =

-25.3075 0.1537 + 4.2140i 0.1537 - 4.2140i b) roots([1 25 10 50]) ans =

-24.6769 -0.1616 + 1.4142i -0.1616 - 1.4142i c) roots([1 25 250 10]) ans = -12.4799 + 9.6566i -12.4799 - 9.6566i

259 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

-0.0402 d) roots([2 10 5.5 5.5 10]) ans =

-4.4660 -1.1116 0.2888 + 0.9611i 0.2888 - 0.9611i e) roots([1 2 8 15 20 16 16]) ans =

0.1776 + 2.3520i 0.1776 - 2.3520i -1.2224 + 0.8169i -1.2224 - 0.8169i 0.0447 + 1.1526i 0.0447 - 1.1526i f) roots([1 2 10 20 5]) ans =

0.0390 + 3.1052i 0.0390 - 3.1052i -1.7881 -0.2900 g) roots([1 2 8 12 20 16 16]) 260 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

ans =

0.0000 + 2.0000i 0.0000 - 2.0000i -1.0000 + 1.0000i -1.0000 - 1.0000i 0.0000 + 1.4142i 0.0000 - 1.4142i

AlternativelyusetheapproachinthisChapter'sSection214:  1. ActivateMATLAB 2. GotothedirectorycontainingtheACSYSsoftware. 3. Typein Acsys

 4. Thenpressthe"transferfunctionSymbolicbutton 261 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

 5. Enterthecharacteristicequationinthedenominatorandpressthe"RouthHurwitz"push button. RH =

[ 1, 10] [ 25, 450] [ -8, 0] [ 450, 0] Two sign changes in the first column. Two roots in RHP=> UNSTABLE

2-37) Use the MATLAB "roots" command same as in the previous problem.

262 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

2-38) To solve using MATLAB, set the value of K in an iterative process and find the roots such that at least one root changes sign from negative to positive. Then increase resolution if desired. Example: in this case 0Norighthandsidepole   Part(c):  274 

AutomaticControlSystems,9thEdition   RHchart:

Chapter2Solutions

[1,250] [25,10] [1248/5,0] [10,0]  Stablesystem>>Norighthandsidepole      Part(d):  RHchart: [2,11/2,10] [10,11/2,0] [22/5,10,0] [379/22,0,0] [10,0,0]  Unstablesystemdueto379/22onthe4throw. 2complexconjugatepolesonrighthandside.Allthepolesare: 4.4660 1.1116 0.2888+0.9611i 0.28880.9611i

275 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition   

Chapter2Solutions

 Part(e):  RHchart: [1,8,20,16] [2,15,16,0] [1/2,12,16,0] [33,48,0,0] [124/11,16,0,0] [36/31,0,0,0] [16,0,0,0]  Unstablesystemdueto33and36/31onthe4thand6throw. 4complexconjugatepolesonrighthandside.Allthepolesare: 0.1776+2.3520i 0.17762.3520i 1.2224+0.8169i 1.22240.8169i 0.0447+1.1526i 0.04471.1526i  Part(f):  RHchart: [1,10,5] [2,20,0]

276 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition   [eps,5,0]

Chapter2Solutions

[(10+20*eps)/eps,0,0] [5,0,0]   Unstablesystemdueto((10+20*eps)/eps)onthe4th. 2complexconjugatepolesslightlyonrighthandside.Allthepolesare: 0.0390+3.1052i 0.03903.1052i 1.7881 0.2900   Part(g):  RHchart: [1,8,20,16,0] [2,12,16,0,0] [2,12,16,0,0] [12,48,32,0,0] [4,32/3,0,0,0] [16,32,0,0,0] [8/3,0,0,0,0] [32,0,0,0,0] [0,0,0,0,0]  Stablesystem>>Norighthandsidepole

277 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition   6poleswtzerorealpart:

Chapter2Solutions

0 0 0.0000+2.0000i 0.00002.0000i 1.0000+1.0000i 1.00001.0000i 0.0000+1.4142i 0.00001.4142i

278 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

(a) s 4  25 s 3  15 s 2  20 s  K 0   



RouthTabulation: s

4

 s

3

s

2

1

K

15 25

20

375  20



K

14.2

25 s



1

284  25 K 14.2

 s

0

. K 20  176

. K ! 0 or K  1136 . 20  176

 K!0

K

 

Thus,thesystemisstablefor01,and 9 K  1 ! 0 .Since K isalwayspositive,the



lastconditioncannotbemetbyanyrealvalueofK.Thus,thesystemisunstableforallvaluesofK.

2

279 

2

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

 3

2

(c) s  ( K  2 ) s  2 Ks  10

0

 



RouthTabulation: s

3

1

2K

s

2

K2

10



K ! 2



2

s

1

s

0

2 K  4 K  10

2

K  2K  5 ! 0

K2 10

 





Theconditionsforstabilityare:K>2and K  2 K  5 ! 0 or(K+3.4495)(K1.4495)>0,



orK>1.4495.Thus,theconditionforstabilityisK>1.4495.WhenK=1.4495thesystemis



marginallystable.Theauxiliaryequationis A( s )



Thefrequencyofoscillationis1.7026rad/sec.

2

3

2

(d) s  20 s  5 s  10 K

2

3.4495 s  10

0. Thesolutionis s

2

2.899 .

0

 



RouthTabulation: s

3

1

5

s

2

20

10 K

s

1



100  10 K 20

s

0

5  0.5K

5  0.5K ! 0 or K  10



K!0

10 K

 

Theconditionsforstabilityare:K>0andK>symsk >>kval=solve(5*k10+k^3,k); >>eval(kval) kval= 1.4233 0.7117+2.5533i 0.71172.5533i  SoK>1.4233. 

Thus,theconditionsforstabilityis:K>2



281 

AutomaticControlSystems,9thEdition   4

3

2

(f) s  12.5 s  s  5 s  K

Chapter2Solutions

Golnaraghi,Kuo

0

 



RouthTabulation: s

4

1

1

 s

3

12.5

5

s

2

12.5  5

K



K

0.6

12.5

 s



1

3  12.5 K 0.6

 s

0

5  20.83 K

5  20.83 K ! 0 or K  0.24

 K!0

K

Theconditionforstabilityis00,and K 

282 

4T  2 3T  1

.Theregionsofstabilityinthe



AutomaticControlSystems,9thEdition   

Chapter2Solutions

Golnaraghi,Kuo

TversusKparameterplaneisshownbelow.









  

240UsetheapproachinthisChapter'sSection214:  1. ActivateMATLAB 2. GotothedirectorycontainingtheACSYSsoftware. 3. Typein Acsys

283 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

 4. Thenpressthe"transferfunctionSymbolicbutton."



284 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

5. Enterthecharacteristicequationinthedenominatorandpressthe"RouthHurwitz"push button. RH=  [1,50000,24*k] [600,k,80*k] [1/600*k+50000,358/15*k,0] [(35680*k1/600*k^2)/(1/600*k+50000),80*k,0]

[24*k*(k^221622400*k+5000000000000)/(k30000000)/(35680*k1/600*k^2)*(1/600*k+50000), 0,0] [80*k,0,0] 6. FindthevaluesofKtomakethesystemunstablefollowingthenextsteps.  (a)Characteristicequation: s 5  600 s 4  50000 s 3  Ks 2  24 Ks  80 K 0   

RouthTabulation:





s

5

1

 s

4

600

s

3

K

7

2

s

3 u 10  K

14320 K

600

600

21408000 K  K

80 K

1

s

80 K 11

7.2 u 10  3113256 u 10 K  14400 K .

2

7

12

K  2.162 u 10 K  5 u 10 K!0

80 K



285 

K  21408000

2

600(21408000  K ) 0

7

2

7

 s

 K  3 u 10

3 u 10  K 16



24 K

50000

 0

AutomaticControlSystems,9thEdition   

Conditionsforstability:



Fromthe s row:



Fromthe s row:



Chapter2Solutions

3



K  3 u 10 

2



K  2.1408 u 10 

Fromthe s row:

1

 K  2.162 u 10 K  5 u 10





Thus, 



2.34 u 10  K  2.1386 u 10 



Fromthe s row:

0



K>0





Golnaraghi,Kuo

7

7

2

7

12

5

7

 0 or ( K  2.34 u 10 )( K  2.1386 u 10 )  0 

5

7

5

7

2.34 u 10  K  2.1386 u 10 

Thus,thefinalconditionforstabilityis:

 5



When K

2.34 u 10 



Z

10.6 rad/sec.



When K

2.1386 u 10  

Z

188.59 rad/sec.

7



(b)Characteristicequation: s 3  ( K  2 ) s 2  30 Ks  200 K 0  





Routhtabulation:



s

3

1

30 K

s

2

K2

200 K



K ! 2



2

s

1

s

0

30 K  140 K

K ! 4.6667

K2

K!0

200 K

 

StabilityCondition:K>4.6667



WhenK=4.6667,theauxiliaryequationis A( s )



Thefrequencyofoscillationis11.832rad/sec.

2

6.6667 s  933.333

 3

2

(c)Characteristicequation: s  30 s  200 s  K 

0



286 

0 .Thesolutionis s

2

140. 

AutomaticControlSystems,9thEdition   



Chapter2Solutions

Golnaraghi,Kuo

Routhtabulation: s

3

1

200

s

2

30

K

s

1



6000  K

K  6000

30 s

0



K!0

K

 0  K  6000 



StabililtyCondition:



WhenK=6000,theauxiliaryequationis A( s )



Thefrequencyofoscillationis14.142rad/sec.

2

30 s  6000

0. Thesolutionis s

2

200. 

 3

2

(d)Characteristicequation: s  2 s  ( K  3) s  K  1 0   



Routhtabulation: s

3

1

K3

s

2

2

K +1

s

1

s

0



K 5

K ! 5

30



K ! 1

K +1

 K>1.WhenK=1thezeroelementoccursinthefirstelementofthe



Stabilitycondition:



 s row.Thus,thereisnoauxiliaryequation.WhenK=1,thesystemismarginallystable,andone



ofthethreecharacteristicequationrootsisats=0.Thereisnooscillation.Thesystemresponse



wouldincreasemonotonically.

0

287 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

242Stateequation:

Openloopsystem:







A







Closedloopsystem:







A  BK

x ( t )

ª 1 2 º «10 0 » ¬ ¼

x ( t )

2 º

 k 2 »¼

Ax ( t )  Bu ( t ) 

ª0 º «1 »  ¬ ¼

B

ª 1 «10  k ¬ 1

Golnaraghi,Kuo

( A  BK )x ( t ) 



Characteristicequationoftheclosedloopsystem:



sI  A  BK



s 1

2

10  k1

s  k2

s  k 2  1 s  20  2k1  k 2 2

0

Stabilityrequirements: 







k 2  1 ! 0 or k 2 ! 1 









20  2k1  k 2 ! 0 or k 2  20  2k1 

Parameterplane:







 

243)Characteristicequationofclosedloopsystem:





sI  A  BK

s

1

0

0

s

1

k1

k2  4

s  k3  3

s  k 3  3 s  k 2  4 s  k1 3

2





288 

0

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

RouthTabulation:



s

3

s

2

s

1



s

k2  4

1 k3  3

k

3

k 3 +3>0 or k 3 ! 3

k1

 3 k 2  4  k1

k

k3  3 0

k

3

 3 k  4  k ! 0 2



1

k !0 1

1

 

StabilityRequirements:







k3 ! 3,



k1 ! 0,

k

3

 3 k 2  4  k1 ! 0 



244(a)SinceAisadiagonalmatrixwithdistincteigenvalues,thestatesaredecoupledfromeachother.The 

secondrowofBiszero;thus,thesecondstatevariable, x 2 isuncontrollable.Sincetheuncontrollable



statehastheeigenvalueat3whichisstable,andtheunstablestate x3 withtheeigenvalueat2is



controllable,thesystemisstabilizable.

 (b)Sincetheuncontrollablestate x1hasanunstableeigenvalueat1,thesystemisnostabilizable. 

2-45) a) ‫ܩ‬ሺ‫ݏ‬ሻ ൌ If

ௗమ௬ ௗ௧

ܻሺ‫ݏ‬ሻ ‫ܨ‬ሺ‫ݏ‬ሻ

௓ሺ௦ሻ

௦మି ೗

െ ‫ ݕ‬ൌ ‫ݖ‬, then ‫ ݏ‬ଶ ܻሺ‫ݏ‬ሻ െ ܻሺ‫ݏ‬ሻ ൌ ܼሺ‫ݏ‬ሻ or ܻሺ‫ݏ‬ሻ ൌ

If ݂ሺ‫ݐ‬ሻ ൌ

ఛௗఛ ௗ௧



൅ ‫ݖ‬, then ‫ܨ‬ሺ‫ݏ‬ሻ ൌ ሺ߬‫ ݏ‬൅ ͳሻܼሺ‫ݏ‬ሻ. As a result: ܼሺ‫ݏ‬ሻ ݃ ‫ݏ‬ଶ െ ͳ ݈ ൌ ‫ܩ‬ሺ‫ݏ‬ሻ ൌ ሺ߬‫ ݏ‬൅ ͳሻܼሺ‫ݏ‬ሻ ቀ‫ ݏ‬ଶ െ ݃ቁ ሺ߬‫ ݏ‬൅ ͳሻ ݈ 289



AutomaticControlSystems,9thEdition  

bሻ ቊ

Chapter2Solutions

Golnaraghi,Kuo

‫ܨ‬ሺ‫ݏ‬ሻ ൌ ሺ߬‫ ݏ‬൅ ͳሻܼሺ‫ݏ‬ሻ ௄೛ ା௄೏ ሺ௦ሻ Ö ܼሺ‫ݏ‬ሻ ൌ ‫ܧ‬ሺ‫ݏ‬ሻ ఛ௦ାଵ ‫ܨ‬ሺ‫ݏ‬ሻ ൌ ൫‫ܭ‬௣ ൅ ‫ܭ‬ௗ ‫ݏ‬൯‫ܧ‬ሺ‫ݏ‬ሻ

As a result:

‫ܭ‬௣ ൅ ‫ܭ‬ௗ ‫ݏ‬ ܻሺ‫ݏ‬ሻ ൌ ‫ܩ‬ሺ‫ݏ‬ሻ‫ܪ‬ሺ‫ݏ‬ሻ ൌ ݃ ‫ܧ‬ሺ‫ݏ‬ሻ ሺ߬‫ ݏ‬൅ ͳሻ ቀ‫ ݏ‬ଶ െ ቁ ݈ ‫ܭ‬௣ ൅  ‫ܭ‬ௗ ‫ݏ‬ ܻሺ‫ݏ‬ሻ ‫ܩ‬ሺ‫ݏ‬ሻ‫ܪ‬ሺ‫ݏ‬ሻ ൌ ൌ ܺሺ‫ݏ‬ሻ ͳ ൅ ‫ܩ‬ሺ‫ݏ‬ሻ‫ܪ‬ሺ‫ݏ‬ሻ ሺ߬‫ ݏ‬൅ ͳሻ ቀ‫ ݏ‬ଶ െ ݃ቁ ൅ ‫ ܭ‬൅‫ݏ ܭ‬ ௣ ௗ ݈ Y ( s) X (s)

G ( s) H (s) (1  G ( s ) H ( s ))

( K p  K d s) ((W s  1)( s 2  g / l )  K p  K d s )

( K p  K d s) (W s  (W ( g / l )  1) s 2  K d s  g / l  K p ) 3

c) lets choose

௚ ௟

ൌ ͳͲܽ݊݀߬ ൌ ͲǤͳ.

UsetheapproachinthisChapter'sSection214: 1. ActivateMATLAB 2. GotothedirectorycontainingtheACSYSsoftware. 3. Typein Acsys

290 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

 4. Thenpressthe"transferfunctionSymbolicbutton."

291 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

 5. Enterthecharacteristicequationinthedenominatorandpressthe"RouthHurwitz"push button. RH =

[

1/10,

kd]

[

eps,

kp-10]

[ (-1/10*kp+1+kd*eps)/eps, [

kp-10,

0] 0]

For the choice of g/l or W the system will be unstable. The quantity W g/l must be >1. Increase W g/l to 1.1 and repeat the process. 292 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

d) Use the ACSYS toolbox as in section 2-14 to find the inverse Laplace transform. Then plot the time response by selecting the parameter values. Or use toolbox 2-6-1.

UsetheapproachinthisChapter'sSection214: 1. ActivateMATLAB 2. GotothedirectorycontainingtheACSYSsoftware. 3. Typein Acsys

 4. Thenpressthe"transferfunctionSymbolicbutton."

293 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

 5. Enterthecharacteristicequationinthedenominatorandpressthe"InverseLaplaceTransform" pushbutton. ---------------------------------------------------------------Inverse Laplace Transform ----------------------------------------------------------------

294 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

G(s) =

[

kd

kp

[-----------------------[

]

------------------------------]

3

3

[1/10 s + s kd + kp - 10

]

1/10 s + s kd + kp - 10]

G(s) factored:

[

kd

[10 -------------------------[

kp

]

10 --------------------------]

3

[ s + 10 s kd + 10 kp - 100

3

]

s + 10 s kd + 10 kp - 100]

Inverse Laplace Transform: g(t) = matrix([[10*kd*sum(1/(3*_alpha^2+10*kd)*exp(_alpha*t),_alpha=RootOf(_Z^3+10*_Z*kd +10*kp100)),10*kp*sum(1/(3*_alpha^2+10*kd)*exp(_alpha*t),_alpha=RootOf(_Z^3+10*_Z*kd+1 0*kp-100))]]) While MATLAB is having a hard time with this problem, it is easy to see the solution will be unstable for all values of Kp and Kd. Stability of a linear system is independent of its initial conditions. For different values of g/l and , you may solve the problem similarly – assign all values (including Kp and Kd) and then find the inverse Laplace transform of the system. Find the time response and apply the initial conditions.

Lets chose g/l=1 and keep =0.1, take Kd=1 and Kp=10.

295 

AutomaticControlSystems,9thEdition  

Y (s) X (s)

G (s) H (s) (1  G ( s ) H ( s ))

Chapter2Solutions

( K p  K d s) ((W s  1)( s 2  g / l )  K p  K d s )

(10  s ) (0.1s  (0.1(1)  1) s 2  s  1  10) 3

(10  s ) (0.1s  0.9 s 2  s  9) 3

Using ACSYS: RH =

[ 1/10,

1]

[ 9/10,

9]

[ 9/5,

0]

[

0]

9,

Hence the system is stable ---------------------------------------------------------------Inverse Laplace Transform ---------------------------------------------------------------G(s) =

s + 10 ------------------------3

2

1/10 s + 9/10 s + s + 9

296 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

G factored:

Zero/pole/gain: 10 (s+10) ----------------(s+9) (s^2 + 10)

Inverse Laplace Transform: g(t) = -10989/100000*exp(2251801791980457/40564819207303340847894502572032*t)*cos(79057/25000*t)+868757373/25000 0000*exp(2251801791980457/40564819207303340847894502572032*t)*sin(79057/25000*t)+10989/100000*ex p(-9*t)

Use this MATLAB code to plot the time response: fori=1:1000 t=0.1*i; tf(i)=10989/100000*exp( 2251801791980457/40564819207303340847894502572032*t)*cos(79057/25000*t)+868757373/250 000000*exp( 2251801791980457/40564819207303340847894502572032*t)*sin(79057/25000*t)+10989/100000*e xp(9*t); end figure(3) plot(1:1000,tf)

297 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

 252)USEMATLAB symst f=5+2*exp(2*t)*sin(2*t+pi/4)4*exp(2*t)*cos(2*tpi/2)+3*exp(4*t) F=laplace(f) cltF=F/(1+F) f= 5+2*exp(2*t)*sin(2*t+1/4*pi)4*exp(2*t)*sin(2*t)+3*exp(4*t)  F= (8*s^3+44*s^2+112*s+160+8*2^(1/2)*s^2+16*2^(1/2)*s+2^(1/2)*s^3)/s/(s^2+4*s+8)/(s+4) cltF=

298 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

(8*s^3+44*s^2+112*s+160+8*2^(1/2)*s^2+16*2^(1/2)*s+2^(1/2)*s^3)/s/(s^2+4*s+8)/(s+4)/(1+(8*s^3 +44*s^2+112*s+160+8*2^(1/2)*s^2+16*2^(1/2)*s+2^(1/2)*s^3)/s/(s^2+4*s+8)/(s+4)) symss cltFsimp=simplify(cltF)  NexttypethedenominatorintoACSYSRouthHurwitzprogram. char=collect(s^4+16*s^3+68*s^2+144*s+160+8*2^(1/2)*s^2+16*2^(1/2)*s+2^(1/2)*s^3) char= 160+s^4+(16+2^(1/2))*s^3+(8*2^(1/2)+68)*s^2+(16*2^(1/2)+144)*s >>eval(char) ans= 160+s^4+4901665356903357/281474976710656*s^3+2790603031573437/35184372088832*s^2+293 1340519928765/17592186044416*s >>sym2poly(ans) ans= 1.000017.414279.3137166.6274160.0000 HencetheCharacteristicequationis: '

s 4  17.4142 s 3  79.3137 s 2  166.6274 s  160 

USEACSYSRouthHurwitztoolasdescribedinpreviousproblemsandthisChapter'ssection214. RH=  [1,5581205465083989*2^(46),160] [87071/5000,5862680441794645*2^(45),0] [427334336632381556219/6127076924293382144,160,0]

299 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

Golnaraghi,Kuo

[238083438912827127943602680401244833403/1879436288300987963959490983755776000, 0,0] [160,0,0]  Thefirstcolumnisallpositive,andthesystemisSTABLE.  Fortheothersection symss G=(s+1)/(s*(s+2)*(s^2+2*s+2)) g=ilaplace(G) G= (s+1)/s/(s+2)/(s^2+2*s+2) g= 1/41/2*exp(t)*cos(t)+1/4*exp(2*t)  cltG=G/(1+G) cltG= (s+1)/s/(s+2)/(s^2+2*s+2)/(1+(s+1)/s/(s+2)/(s^2+2*s+2))  cltGsimp=simplify(cltG) cltGsimp= (s+1)/(s^4+4*s^3+6*s^2+5*s+1)  NexttypethedenominatorintoACSYSRouthHurwitzprogram.

2100 

AutomaticControlSystems,9thEdition  

Chapter2Solutions

RH=  [1,6,1] [4,5,0] [19/4,1,0] [79/19,0,0] [1,0,0]  STABLE 

2101 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter3Solutions

Golnaraghi,Kuo

Chapter 3__________________________________________________________________________ 3-1)

a)

‫ܩ‬ሺ‫ݏ‬ሻ‫ܪ‬ሺ‫ݏ‬ሻ ൌ ቂ

b)

‫ܩ‬ሺ‫ݏ‬ሻ ൌ

c) d) e)

ாሺ௦ሻ ோሺ௦ሻ

௄೛ ௦ሺ௦ା௣ሻ

௄೛ ௦ሺ௦ା௣ሻ

௒ሺ௦ሻ

௄೛ ௄ವ ௦ା௣



ଵ ଵିீሺ௦ሻுሺ௦ሻ

Feedback ratio =

௑ሺ௦ሻ

ቃ ‫ܭ‬஽ ‫ ݏ‬ൌ

ீሺ௦ሻ ଵିீሺ௦ሻுሺ௦ሻ

௦ା௣ ௦ା௣ି௄೛ ௄ವ

ୋሺୱሻୌሺୱሻ ଵିீሺ௦ሻுሺ௦ሻ

௄೛ ௄ವ ௦ା௣ି௄೛ ௄ವ

௄೛ ௦൫௦ା௣ି௄ವ ௄೛ ൯

3-2)

Characteristic equation: ‫ݏ‬ሺ‫ ݏ‬൅ ͳሻሺ‫ ݏ‬൅ ʹሻ ൅ ͳ ൌ Ͳ Ö ‫ ݏ‬ଷ ൅ ͵‫ ݏ‬ଶ ൅ ʹ‫ ݏ‬൅ ͳ ൌ Ͳ

31 

AutomaticControlSystems,9thEdition  

Chapter3Solutions

Golnaraghi,Kuo

3-3)

G

1

1  G1 H 1

H2 G2 G1 1  G1 H 1

G1G2 1  G1 H 1

G3 

H2 G2

‫ܩ‬ଵ ‫ܩ‬ଶ ܻሺ‫ݏ‬ሻ ‫ܩ‬ଵ ‫ܩ‬ଶ ‫ܩ‬ଷ ൅  ‫ܩ‬ଵ ‫ܪ‬ଶ ‫ܪ‬ଶ ͳ െ ‫ܩ‬ଵ ‫ܪ‬ଵ ൌ ൬‫ܩ‬ଷ ൅ ൰ ൌ ‫ܩ‬ଶ ͳ െ ‫ܩ‬ଵ ‫ܪ‬ଵ ൅ ‫ܩ‬ଵ ‫ܩ‬ଶ ‫ܪ‬ଷ ܺሺ‫ݏ‬ሻ ͳ ൅ ‫ܩ‬ଵ ‫ܩ‬ଶ ‫ܪ‬ଷ ͳ െ ‫ܩ‬ଵ ‫ܪ‬ଵ

32 

AutomaticControlSystems,9thEdition  

Chapter3Solutions

Golnaraghi,Kuo

3-4)

G2 1  G 2 G3 H 3

X

+

G1 -

G2 1  G2G3 H 3  G2 H 2

H1

33 

G3

Y

AutomaticControlSystems,9thEdition A  

X

+ -

Chapter3Solution ns

G1G2 G3 1  G 2 G3 H 3  G 2 H 2

H1 G3

ܻሺ‫ݏ‬ሻ ‫ܩ‬ଵ ‫ܩ‬ଶ ‫ܩ‬ଷ ൌ ܺሺ‫ݏ‬ሻ ͳ ൅ ‫ܩ‬ଵ ‫ܩ‬ଶ ‫ܪ‬ଵ  ൅ ‫ܩ‬ଶ ‫ܪ‬ଶ  ൅  ‫ܩ‬ଶ ‫ܩ‬ଷ ‫ܪ‬ଷ

3 3-5)

34 

Golnarraghi,Kuo

Y

AutomaticControlSystems,9thEdition  

Chapter3Solutions

3-6) MATLAB symss G=[2/(s*(s+2)),10;5/s,1/(s+1)] H=[1,0;0,1] A=eye(2)+G*H B=inv(A) Clp=simplify(B*G) G= [ 2/s/(s+2), 10] [ 5/s, 1/(s+1)] H= 1 0

0 1

A= [ 1+2/s/(s+2), 10] [ 5/s, 1+1/(s+1)] B= [ [

s*(s+2)/(s^2-48*s-48), -10/(s^2-48*s-48)*(s+1)*s] -5/(s^2-48*s-48)*(s+1), (s^2+2*s+2)*(s+1)/(s+2)/(s^2-48*s-48)]

Clp = [ [

-2*(24+25*s)/(s^2-48*s-48), 10/(s^2-48*s-48)*(s+1)*s] 5/(s^2-48*s-48)*(s+1), -(49*s^2+148*s+98)/(s+2)/(s^2-48*s-48)]

35 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition A  

Chapter3Solution ns

3-7)



3-8)

36 

Golnarraghi,Kuo

AutomaticControlSystems,9thEdition A  

Chapter3Solution ns

3-9)

3 3-10)

3 3-11)

37 

Golnarraghi,Kuo

AutomaticControlSystems,9thEdition A  

Chapter3Solution ns

3-12)

3-13) symst f=100*(10.3 3*exp(6*t)0 0.7*exp(10*t)) F=laplace(f) symss F=eval(F)  Gc=F*s M=30000 symsK Olp=simplify(K K*Gc/M/s) Kt=0.15 Clp=simplify(Olp/(1+Olp*K Kt)) s=0 Ess=eval(Clp)   f= 10030*exp(6 6*t)70*exp(10*t)  F= 80*(11*s+75)/s/(s+6)/(s+1 10)  ans= 38 

Golnarraghi,Kuo

AutomaticControlSystems,9thEdition A Chapter3Solution ns   (880*s+6000)/s/(s+6)/(s+1 10)  Gc= (880*s+6000)/(s+6)/(s+10 0)  M= 30000  Olp= 1/375*K*(11**s+75)/s/(s+6 6)/(s+10)  Kt= 0.1500  Clp= 2 20/3*K*(11*s s+75)/(2500*s^3+40000*ss^2+150000*ss+11*K*s+75*K)  s s= 0  E Ess= 2 20/3

3 3-14)

39 

Golnarraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter3Solutions

3-15) Note: If

1

G(s)=g(t),then

1

{easG(s)}=u(ta)•g(ta)

symsts f=100*(10.3*exp(6*(t0.5))) F=laplace(f)*exp(0.5*s) F=eval(F)  Gc=F*s M=30000 symsK Olp=simplify(K*Gc/M/s) Kt=0.15 Clp=simplify(Olp/(1+Olp*Kt)) s=0 Ess=eval(Clp) digits(2) Fsimp=simplify(expand(vpa(F))) Gcsimp=simplify(expand(vpa(Gc))) Olpsimp=simplify(expand(vpa(Olp))) Clpsimp=simplify(expand(vpa(Clp)))  f= 10030*exp(6*t+3)  F= (100/s30*exp(3)/(s+6))*exp(1/2*s)  F= (100/s2650113767660283/4398046511104/(s+6))*exp(1/2*s)  Gc= (100/s2650113767660283/4398046511104/(s+6))*exp(1/2*s)*s  M= 30000  Olp= 1/131941395333120000*K*(2210309116549883*s2638827906662400)/s/(s+6)*exp(1/2*s)  Kt= 0.1500  Clp=

310 

Golnaraghi,Kuo

AutomaticControlSystems,9thEdition A Chapter3Solution ns Golnarraghi,Kuo   2 20/3*K*(2210 03091165498 883*s263882 27906662400 0)*exp(1/2*s)/(87960930 02220800000 0*s^2 5 52776558133 324800000*s+ +2210309116 6549883*K*eexp(1/2*s)*s2638827906 6662400*K*exxp(1/2*s))  s= 0  Ess= 2 20/3  Fsimp= 50*s)*(5.*s6 6.)/s/(s+6.) .10e3*exp(.5  Gcsimp= .10e3*exp(.5 50*s)*(5.*s6 6.)/(s+6.)  Olpsimp= .10e2*K*exp p(.50*s)*(17 7.*s20.)/s/(s++6.)  Clpsimp= 5 5.*K*exp(.50 0*s)*(15.*s1 17.)/(.44e4*ss^2.26e5*s+1 11.*K*exp(.5 50*s)*s13.*K K*exp(.50*s)))

3-16)

311 

AutomaticControlSystems,9thEdition  

Chapter3Solutions

Golnaraghi,Kuo

3-17)

3-18) ͳ ܺଵ ሺ‫ݏ‬ሻ ൌ ሾെͷܺଵ ሺ‫ݏ‬ሻ െ ͸ܺଶ ሺ‫ݏ‬ሻ ൅ ͵ܺଷ ሺ‫ݏ‬ሻ ൅ ͲǤͷܷଵ ሺ‫ݏ‬ሻሿ ‫ݏ‬ ͳ ܺଶ ሺ‫ݏ‬ሻ ൌ ሾܺଵ ሺ‫ݏ‬ሻ െ  ܺଷ ሺ‫ݏ‬ሻ ൅ ͲǤͷܷଶ ሺ‫ݏ‬ሻሿ ‫ݏ‬ ‫۔‬ ͳ ۖ ሺ‫ݏ‬ሻ ൌ ሾെͲǤͷܺଵ ሺ‫ݏ‬ሻ ൅ ͳǤͷܺଶ ሺ‫ݏ‬ሻ ൅ ͲǤͷܺଷ ሺ‫ݏ‬ሻ ൅ ͲǤͷܷଵ ሺ‫ݏ‬ሻ ൅ ͲǤͷܷଶ ሺ‫ݏ‬ሻሿ ‫ܺە‬ଷ ‫ݏ‬ ‫ۓ‬ ۖ

ܼଵ ሺ‫ݏ‬ሻ ൌ ͲǤͷܺଵ ሺ‫ݏ‬ሻ ൅ ͲǤͷܺଶ ሺ‫ݏ‬ሻ ܼଶ ሺ‫ݏ‬ሻ ൌ ͲǤͷܺଵ ሺ‫ݏ‬ሻ ൅ ͲǤͷܺଷ ሺ‫ݏ‬ሻ

0.5

u1

0.5

z1

1

3 0.5 1/s 0.5

0.5 u2

0.5

-1

1/s

-6 x2 1

x3

x1

0.5 0.5

-5

1

1.5

0.5 -0.5

312 

1/s

z2

AutomaticControlSystems,9thEdition  

Chapter3Solutions

Golnaraghi,Kuo

3-19)

‫ܩ‬ሺ‫ݏ‬ሻ ൌ

‫ܤ‬ଵ ‫ ݏ‬൅ ‫ܤ‬଴ ܻሺ‫ݏ‬ሻ ൌ ଶ  ܷሺ‫ݏ‬ሻ ‫ ݏ‬൅ ‫ܣ‬ଵ ‫ ݏ‬൅ ‫ܣ‬଴

Ö

ሺ‫ ݏ‬൅ ‫ܣ‬ଵ ‫ ݏ‬൅ ‫ܣ‬଴ ሻܻሺ‫ݏ‬ሻ ൌ ሺ‫ܤ‬ଵ ‫ ݏ‬൅ ‫ܤ‬଴ ሻܷሺ‫ݏ‬ሻ

Ö

ቀ‫ ݏ‬൅ ‫ܣ‬ଵ ൅

Ö

Ö Ö

஺బ ௦

ቁ ܻሺ‫ݏ‬ሻ ൌ ‫ܤ‬ଵ ܷሺ‫ݏ‬ሻ ൅

஻బ ௦

ܷሺ‫ݏ‬ሻ

‫ܻݏ‬ሺ‫ݏ‬ሻ ൌ  െ‫ܣ‬ଵ ܻሺ‫ݏ‬ሻ ൅ ܺሺ‫ݏ‬ሻ ൅  ‫ܤ‬ଵ ܷሺ‫ݏ‬ሻ ܺሺ‫ݏ‬ሻ ൌ  െ

஺బ ௦

ܻሺ‫ݏ‬ሻ ൅

஻బ ௦

ܷሺ‫ݏ‬ሻ

‫ܻݏ‬ሺ‫ݏ‬ሻ ൌ  െ‫ܣ‬ଵ ܻሺ‫ݏ‬ሻ ൅ ܺሺ‫ݏ‬ሻ ൅  ‫ܤ‬ଵ ܷሺ‫ݏ‬ሻ ൜ ‫ܺݏ‬ሺ‫ݏ‬ሻ ൌ  െ‫ܣ‬଴ ܻሺ‫ݏ‬ሻ ൅  ‫ܤ‬଴ ܷሺ‫ݏ‬ሻ ‫ݕ‬ሶ ൌ  െ‫ ݕܣ‬൅ ‫ ݔ‬൅ ‫ܤ‬ଵ ‫ݑ‬ሺ‫ݐ‬ሻ ൜ ‫ݔ‬ሶ ൌ  െ‫ܣ‬଴ ‫ ݕ‬൅ ‫ܤ‬଴ ‫ݑ‬ሺ‫ݐ‬ሻ B1 u

B0

1/s

1 x

313 

y -A1

-A0 3-20)

1/s

AutomaticControlSystems,9thEdition A  

Chapter3Solution ns

3 3-21)

3 3-22)

314 

Golnarraghi,Kuo

AutomaticControlSystems,9thEdition A  

Chapter3Solution ns

3-23)

315 

Golnarraghi,Kuo

AutomaticControlSystems,9thEdition A  

Chapter3Solution ns

3-24)

3 3-25)

3 3-26)

3 3-27)

316 

Golnarraghi,Kuo

AutomaticControlSystems,9thEdition A  

Chapter3Solution ns

3-28)

317 

Golnarraghi,Kuo

AutomaticControlSystems,9thEdition A  

Chapter3Solution ns

3-29)

318 

Golnarraghi,Kuo

AutomaticControlSystems,9thEdition A  

Chapter3Solution ns

3-30) Use Mason'ss formula:

3-31) MATLAB symssK G=100//(s+1)/(s+5) g=ilaplace(G/s) H=K/s YN=sim mplify(G/(1+G*H)) Yn=ilap place(YN/s)  G= 100/(ss+1)/(s+5)  g= p(5*t)+20 25*exxp(t)+5*exp  H= K/s 319 

Golnarraghi,Kuo

AutomaticControlSystems,9thEdition  

Chapter3Solutions

YN=  100*s/(s^3+6*s^2+5*s+100*K)  ApplyRouthHurwitzwithinSymbolictoolofACSYS(seechapter3) 

 RH=  [1,5] [6,100*k] [50/3*k+5,0] [100*k,0] Stabilityrequires:0 K M 1  M 2  B1 B2  B2 B3  B1 B3 @ s  B1  B2 K

^

3

2

B3 s  K

s M 1 M 2 s  > B1  B3 M 2  B2  B3 M 1 @ s  > K M 1  M 2  B1 B2  B2 B3  B1 B3 @ s  B1  B2 K 3

2

(b)Forceequations:

46 

` `



AutomaticControlSystems,9thEdition

2





d y1 dt





2

B

 B2 dy1

1

M

dt



Chapter4Solutions

B2 dy 2 M dt



1

f

 Golnaraghi,Kuo

dy2

dy1

dt

dt

M



K B2

y2 

(i)Statediagram:

  Definetheoutputs oftheintegrators asstatevariables, dy1 x1 y 2 , x 2 dt .



  Stateequations: 



dx1 dt







K B2



dx1



K B2

x1  x3







Transferfunctions:



Y1 ( s) F (s)



dx 2

K M

x1 

B1 M

y2 , x2 dx3

x3

dt



dt



K M

B2 s  K

x1 

1

f

M

B1 M

dy1

.

dt x3 

1

f

M

Y2 ( s )

B2

F (s)

MB2 s  ( B1 B2  KM ) s  ( B1  B2 ) K

s ¬ª MB2 s  B1 B2  KM s  B1  B2 K ¼º

2

(c)Forceequations: 

dy1

dy2 dt



1 B1

2

f

d y2 dt

2



B

1

 B2 dy2 M

dt

(i)Statediagram:

47 

x2 

y1 , x3

2

dt



dt

(ii)Stateequations:Statevariables: x1

dt



dx 2

x1  x 2



B1 dy2 M dt



B1 dy1 M dt



K M

y2 



AutomaticConttrolSystems,9thEdition

Chapteer4Solutionss

 Golnarraghi,Kuo











Stateequatio ons:Definetheeoutputsofintegratorsassttatevariables.







dx1

x2

dt 



d dt



K M

(ii)Stateequations:statevariaables: x1



dx1 dt



dxx 2



x3 

1

dx 2

f

x3

dt

B1

x1 

B2 M

x2 

y1 , x 2 dxx3

f

M y 2 , x3



d dt

1

K

x2 

M

B2 M

dy 2

.

dt x3 

1

f

M

Statediagram m:

  







Transferfuncctions: Y1 ( s )

Ms  B1  B2 s  K

F (s)

B1 s Ms  B2 s  K

2

2

Y2 ( s )

1

F (s)

Ms  B2 s  K

  4-55)

48 

2



AutomaticConttrolSystems,9thEdition

Chapteer4Solutionss

 Golnarraghi,Kuo

(a)Forceequaations: 

 y1





1 K2

2

d y2

( f  Mg )  y 2

dt



2

B dy 2 M dt



K1  K 2 M

y2 

K2

y1

M

Staatediagram:

  Staateequations: Deffinethestate varriablesas: dy 2 x1 y 2 , x 2 d dt .   dx1

dtt





d 2 dx

x2

dt



K1 M

x1 

B M



Transferfunction ns:









dy1 dt



1 B1

> f (t )  Mg @ 

( f  Mg ) 

M

2

Y2 ( s )

2

K 2 ( Ms  Bs  K1 )

F ( s)

(b)Forcceequations:

1

s  Bs  K1  K 2

Y1 ( s )



x2 

dy 2 dt



K1 B1

y

 y2 1

F ( s)

2

d y2 dt

2

1 2

Mss  Bs  K1



§ dy1  dy2 ·  K1 y  y  B2 y  y  B2 dy2  1 2 1 2 ¨ ¸ M M © dt dt ¹ M M dt B1

Stattediagram:(W Withminimumnumberofinttegrators)

 

49 

AutomaticConttrolSystems,9thEdition

Chapteer4Solutionss

 Golnarraghi,Kuo



ToobtainthetranssferfunctionsY1 ( s ) / F ( s ) andY2 ( s ) / F ( s ), weneedtoredefinethesttatevariablesaas:



x1



Stattediagram:

y2 , x2

dy 2 / dtt , and x3

y1 . 

 







Transferfuncctions:

F (s)

4-66)

Ms  B1  B2 s  K1 2

Y1 ( s ) s

2

M s  B B > MB 1

1

2

 MK1 @

Bs  K1

Y2 ( s ) F (s)

s

2

M s  B B > MB 1

1

2

 MK1 @



a) y1

y2

m

K ( y1  y 2 )

K ( y1  y 2 )

M

Pmgy 2 b)

PMgy1

From Newtton's Law: ‫ݕܯ‬ሷଵ ൌ ‫ ܨ‬െ ‫ܭ‬ሺ‫ݕ‬ଵ െ ‫ݕ‬ଶ ሻ െ ߤ‫ݕ݃ܯ‬ଵሶ ݉‫ݕ‬ሷ ଶ ൌ ‫ܭ‬ሺ‫ݕ‬ ‫ݕ‬ଵ െ ‫ݕ‬ଶ ሻ െ ߤ ߤ݉݃‫ݕ‬ଶሶ If y1 and y2 are considerred as a posiition and v1 and a v2 as vellocity variabbles ‫ݕ‬ଵሶ ൌ ‫ݒ‬ଵ ‫ݕ‬ଶሶ ൌ ‫ݒ‬ଶ Then: ൞ ‫ݒ‬ଵሶ ൌ ‫ ܨ‬െ ‫ܭ‬ሺሺ‫ݕ‬ଵ െ ‫ݕ‬ଶ ሻ െ ߤ‫ݒ݃ܯ‬ଵ ‫ݒܯ‬ሶ ݉‫ݒ‬ሶ ‫ݒ‬ଶሶ ൌ ‫ ܨ‬െ ‫ܭ‬ሺሺ‫ݕ‬ଵ െ ‫ݕ‬ଶ ሻ െ ߤ݉݃‫ݒ‬ଶ The output equation cann be the veloocity of the engine, e whicch means ‫ ݖ‬ൌ ‫ݒ‬ଶ 410



F

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

c) ‫ ݏܯ‬ଶ ܻଵ ሺ‫ݏ‬ሻ ൌ ‫ ܨ‬െ ‫ܭ‬൫ܻଵ ሺ‫ݏ‬ሻ െ ܻଶ ሺ‫ݏ‬ሻ൯ െ ߤ‫ܻݏ݃ܯ‬ଵ ሺ‫ݏ‬ሻ ቐ ݉‫ ݏ‬ଶ ܻଶ ሺ‫ݏ‬ሻ ൌ ‫ܭ‬൫ܻଵ ሺ‫ݏ‬ሻ െ ܻଶ ሺ‫ݏ‬ሻ൯ െ ߤ݉݃‫ܻݏ‬ଶ ሺ‫ݏ‬ሻ ܼሺ‫ݏ‬ሻ ൌ ܸଶ ሺ‫ݏ‬ሻ ൌ ‫ܻݏ‬ሺ‫ݏ‬ሻ Obtaining

௓ሺ௦ሻ ிሺ௦ሻ

requires solving above equation with respect to Y2(s)

From the first equation: ሺ‫ ݏܯ‬ଶ ൅ ‫ ܭ‬൅ ߤ‫ݏ݃ܯ‬ሻܻଵ ሺ‫ݏ‬ሻ ൌ ‫ ܨ‬൅ ‫ܻܭ‬ଶ ሺ‫ݏ‬ሻ ܻଵ ሺ‫ݏ‬ሻ ൌ

‫ ܨ‬൅ ‫ܻܭ‬ଶ ሺ‫ݏ‬ሻ ൅ ߤ‫ ݏ݃ܯ‬൅ ‫ܭ‬

‫ ݏܯ‬ଶ

Substituting into the second equation: ݉‫ ݏ‬ଶ ܻଶ ሺ‫ݏ‬ሻ ൌ

‫ ܨܭ‬൅ ‫ ܭ‬ଶ ܻଶ ሺ‫ݏ‬ሻ െ ‫ܻܭ‬ଶ ሺ‫ݏ‬ሻ െ ߤ݉݃‫ܻݏ‬ଶ ሺ‫ݏ‬ሻ ‫ ݏܯ‬ଶ ൅ ߤ‫ ݏ݃ܯ‬൅ ‫ܭ‬

By solving above equation: ܼሺ‫ݏ‬ሻ ‫ܻݏ‬ଶ ሺ‫ݏ‬ሻ ݉‫ ݏ‬ଶ ൅ ݉ߤ݃‫ ݏ‬൅ ͳ ൌ ൌ ‫ ݏ݉ܯ‬ଷ ൅ ሺʹ‫݃ߤ݉ܯ‬ሻ‫ ݏ‬ଶ ൅ ሺ‫ ݇ܯ‬൅ ‫݉ܯ‬ሺߤ݃ሻଶ ൅ ݉݇ሻ‫ ݏ‬൅ ‫݃ߤܭ‬ሺ‫ ܯ‬൅ ݉ሻ ‫ܨ‬ሺ‫ݏ‬ሻ ‫ܨ‬ሺ‫ݏ‬ሻ d) Ͳ ‫Ͳ ۍ‬ ‫ݕ‬ଵሶ ‫ܭ ێ‬ ‫ݕ‬ଶሶ ൦ ൪ ൌ  ‫ێ‬െ ‫ݕ‬ଷሶ ‫݉ ێ‬ ‫ݕ‬ସሶ ‫ܭ ێ‬ ‫݉ ۏ‬

Ͳ Ͳ ‫ܭ‬ ‫ܯ‬ ‫ܭ‬ െ ‫ܯ‬

ͳ Ͳ െߤ݃ Ͳ

Ͳ Ͳ ͳ ‫ݕ ې‬ଵ ‫ېͲۍ‬ ‫ݕ ۑ‬ ‫ۑ ێ‬ Ͳ ‫ ۑ‬൦‫ݒ‬ଶ ൪ ൅ ‫ܨ ۑ ͳ ێ‬ ‫ ۑ‬ଵ ‫ۑ ܯێ‬ ‫ݒ ۑ‬ଶ ‫ۏ‬ Ͳ‫ے‬ െߤ݃‫ے‬

‫ݕ‬ଵ ‫ݕ‬ଶ ܼ ൌ ሾͲͲͲͳሿ ൦‫ ݒ‬൪ ൅ ሾͲሿ‫ܨ‬ ଵ ‫ݒ‬ଶ 4-7)(a)Forceequations: 

 f (t )

§ dy1  dy2 · ¸ © dt dt ¹

2 § dy1  dy2 · M d y2  B dy2  ¸ t 2 dt dt © dt dt ¹

K h y1  y2  Bh ¨

(b)Statevariables: x1

y1  y 2 , x 2

K h y1  y 2  Bh ¨

dy 2



dt

411 

AutomaticControlSystems,9thEdition



Stateequations:







dx1 dt



Kh Bh

x1 

1

Chapter4Solutions

dx 2

f (t )

dt

Bh



Bt M

x2 

1

 Golnaraghi,Kuo

f (t ) 

M

4-8)

D2

D1

For the left pendulum: ܶ௥௢௧ ൌ ݈݉ ଶ ߙଶሷ ܷ௚ ൌ  െ݈݉݃ •‹ ߙଶ ଻

ܶ ൌ ‫ ܭ‬ቀ ݈ቁ ሺ•‹ ߙଶ െ •‹ ߙଵ ሻ …'• ߙଶ ቀ ݈ቁ ൌ ‫ܭ‬ Ö ܶ௥௢௧ ൅ ܷ௚ ൅ ܶ ൌ Ͳ Ö ݈݉ ଶ ߙଶሷ ൅ ݈݉݃ •‹ ߙଶ ൅

ସଽ

ସଽ ଶ ݈ ሺ•‹ ߙଶ ଺ସ

െ •‹ ߙଵ ሻ …'• ߙଶ

‫݈ܭ‬ଶ ሺ•‹ ߙଶ െ •‹ ߙଵ ሻ …'• ߙଶ

଺ସ

For the right pendulum, we can write the same equation: ݈݉ଶ ߙଵሷ ൅ ݈݉݃ •‹ ߙଵ ൅

ସଽ ଺ସ

‫݈ܭ‬ଶ ሺ•‹ ߙଵ െ •‹ ߙଶ ሻ …'• ߙଵ

since the angles are small: •‹ ߙଶ ؆ ߙଶ …'• ߙଶ ؆ ͳ Ö ൞ •‹ ߙଵ ൌ ߙଵ …'• ߙଵ ൌ ͳ

4-9)

Ö

݈݉ߙଵሷ ൅ ݉݃ߙଵ ൅ ݈݉ߙଶሷ ൅ ݉݃ߙଶ ൅

a)

412 

ସଽ ଺ସ ସଽ ଺ସ

‫݈ܭ‬ሺߙଵ െ ߙଶ ሻ ൌ Ͳ ‫݈ܭ‬ሺߙଶ െ ߙଵ ሻ ൌ Ͳ

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

Fy

T

x(t)

m

Fx

mg M

f

T

b)

If we consider the coordinate of centre of gravity of mass m as (xg, yg), Then ‫ݔ‬௚ ൌ ‫ ݔ‬൅ ݈ •‹ ߠ and ‫ݕ‬௚ ൌ ݈ …'• ߠ From force balance, we have: ‫ݔܯ‬ሷ ൅ ݉‫ݔ‬ሷ௚ ൌ ݂ Ö ‫ݔܯ‬ሷ ൅ ݉‫ݔ‬ሷ ൅ ݉൫ߠሷ …'• ߠ െ ߠሶ ଶ •‹ ߠ൯ ൌ ݂ From the torque balance, we have: ሺ‫ܨ‬௫ …'• ߠሻ݈ െ ൫‫ܨ‬௬ •‹ ߠ ൯݈ ൌ ሺ݉݃ •‹ ߠሻ݈ Where: ‫ܨ‬௫ ൌ ݉‫ݔ‬ሷ௚ ൌ ݉൫‫ݔ‬ሷ െ ݈ߠሶ ଶ ‫ ߠ݊݅ݏ‬൅ ݈ߠሷ …'• ߠ൯ ቊ ‫ܨ‬௬ ൌ ݉‫ݕ‬ሷ௚ ൌ  െ݉൫݈ߠሶ ଶ …'• ߠ ൅ ݈ߠሷ •‹ ߠ൯ Substituting these equation: ݉‫ݔ‬ሷ …'• ߠ ൅ ݈݉ߠሷ ൌ ݉݃ •‹ ߠ

4-10) a)

413 

AutomaticControlSystems,9thEdition

Chapter4Solutions

Fy1

 Golnaraghi,Kuo

Fy 2 Fx 2

Fx1 m1 g

m2 g

T1

b)

T2

Kinetic energy (i) For lower pendulum: ଶ ଶ ͳ ͳ ݀ ݀ ଶ ሶ ܶଵ ൌ ‫ܬ‬ଵ ߠଵ ൅ ݉ଵ ቊ൤ ሺ݈ଵ •‹ ߠଵ ሻ൨ ൅ ൤ ሺ݈ଵ …'• ߠଵ ሻ൨ ቋ ʹ ʹ ݀‫ݐ‬ ݀‫ݐ‬

For upper pendulum: ଶ ଶ ͳ ͳ ݀ ݀ ܶଶ ൌ ‫ܬ‬ଶ ߠሶଶଶ ൅ ݉ଶ ቊ൤ ሺ݈ଶ •‹ ߠଶ ሻ൨ ൅ ൤ ሺ݈ଶ …'• ߠଶ ሻ൨ ቋ ʹ ʹ ݀‫ݐ‬ ݀‫ݐ‬ ଵ

For the cart: ܶଷ ൌ ‫ݔܯ‬ሶ ଶ ଶ

(ii) Potential energy: For lower pendulum:

ܷଵ ൌ ݉ଵ ݈݃ଵ …'• ߠଶ

For upper pendulum:

ܷଶ ൌ ݉ଶ ݈݃ଶ …'• ߠଶ

For the cart:

ܷଷ ൌ Ͳ

(iii) Total kinetic energy:

ܶଵ ൌ ܶଵ ൅ ܶଶ ൅ ܶଷ

Total potential energy: ܷ ൌ ܷଵ ൅ ܷଶ ൅ ܷଷ 414 

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

The Lagrangian equation of motion is: ݀ ߲ܶ ߲ܶ ߲ܷ ‫ۓ‬ ൅ ൌ݂ ൬ ൰െ ݀‫ݔ߲ ݐ‬ሶ ߲‫ݔ߲ ݔ‬ ۖ ۖ ݀ ߲ܶ ߲ܶ ߲ܷ ቆ ቇ െ ൅ ൌͲ ሶ ݀‫ݐ‬ ߲ߠ ߲ߠ ߲ߠ ଵ ଵ ଵ ‫۔‬ ۖ ۖ ݀ ቆ ߲ܶ ቇ െ ߲ܶ ൅  ߲ܷ ൌ Ͳ ߲ߠଶ ߲ߠଶ ‫ߠ߲ ݐ݀ە‬ଶሶ Substituting T and U into the Lagrangian equation of motion gives: ଶ ଶ ሺ݉ଵ ൅ ݉ଶ ൅ ‫ܯ‬ሻ‫ݔ‬ሷ ൅ ݉ଵ ݈ଵ ߠଵ …'• ߠଵ ൅ ݉ଶ ݈ଶ ߠଶ …'• ߠଶ ൌ ݉ଵ ݈ଵ ߠଵሶ •‹ ߠଵ ൅ ݉ଶ ݈ଶ ߠଶሶ •‹ ߠଶ ൅ ݂ ൞ ݉ଵ ݈ଵ ‫ݔ‬ሷ …'• ߠଵ ൅ ሺ‫ܬ‬ଵ ൅ ݉ଵ ݈ଵଶ ሻߠଵሷ ൌ ݉ଵ ݈ଵ ݃ •‹ ߠଵ ݉ଶ ݈ଶ ‫ݔ‬ሷ …'• ߠଶ ൅ ሺ‫ܬ‬ଶ ൅ ݉ଶ ݈ଶଶ ሻߠଶሷ ൌ ݉ଶ ݈ଶ ݃ •‹ ߠଶ

4-11) a)

From the Lagrangian equation of motion: ൬

b)

‫ܬ‬ ൅ ݉൰ ‫݌‬ሷ ൅ ݉݃ •‹ ߙ െ ݉‫ߙ݌‬ሶ ଶ ൌ Ͳ ‫ݎ‬ଶ

As: ߙൌ

݀ ߠ ‫ܮ‬

Then ൬

‫ܬ‬ ݀ߠሶ ݀ ൅ ݉൰ ‫݌‬ሷ ൅ ݉݃ •‹ ቆ ቇ െ ݉‫ߠ ݌‬ሶ ଶ ൌ Ͳ ଶ ‫ݎ‬ ‫ܮ‬ ‫ܮ‬

If we linearize the equation about beam angle = 0, then sin and sin Then: ‫ܬ‬ ݀ ൅ ݉൰ ‫݌‬ሷ ൌ െ݉݃ ߠ ଶ ‫ݎ‬ ࣦ ‫ܬ‬ ݉݃݀ ߠሺ‫ݏ‬ሻ ൬ ଶ ൅ ݉൰ ‫ ݏ‬ଶ ܲሺ‫ݏ‬ሻ ൌ  െ ‫ݎ‬ ‫ܮ‬ ܲሺ‫ݏ‬ሻ ݉݃݀ ൌ ߠሺ‫ݏ‬ሻ ‫ ݏ‬ଶ ‫ ܮ‬ቀ ‫ ܬ‬൅ ݉ቁ ‫ݎ‬ଶ ൬

415 

AutomaticControlSystems,9thEdition

c)

Chapter4Solutions

Considering ൜

‫݌‬ሶ ൌ ‫ݍ‬ ‫݌‬ሷ ൌ ‫ݍ‬ሶ

Then the state-space equation is described as:

‫݌‬ሶ Ͳ ൤ ൨ൌቂ ‫ݍ‬ሶ Ͳ

d)

G ( s)

ͳ ‫݌‬ ቃቂ ቃ ൅ ൦ Ͳ ‫ݍ‬

mgd  ( s L( J / r 2  m)) 2

clear all % select values of m, d, r, and J %Step input g=10; J=10; M=1; D=0.5; R=1; L=5; G=tf([M*g*D],[L*(J/R^2+M) 0 0]) step(G,10) xlabel( 'Time(sec)'); ylabel('Amplitude'); Transfer function: 5 -----55 s^2

416 

Ͳ ݉݃݀ ൪ߠ ‫ܬ‬ ‫ ܮ‬ቀ ଶ ൅ ݉ቁ ‫ݎ‬

 Golnaraghi,Kuo

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

4-12) If the aircraft is at a constant altitude and velocity, and also the change in pitch angle does not change the speed, then from longitudinal equation, the motion in vertical plane can be written as: ‫ݔ‬ ‫ݑ ۓ‬ሶ ൌ ݉ െ ݃ •‹ ߠ െ ‫߱ݍ‬ ۖ ۖ߱ሶ ൌ ‫ ݖ‬െ ݃ …'• ߠ ൅ ‫ݑݍ‬ ݉ ‫ܯ‬ ‫۔‬ ‫ݍ‬ሶ ൌ ۖ ‫ܫ‬௬௬ ۖ ߠሶ ൌ ‫ݍ‬ ‫ە‬ Where u is axial velocity,  is vertical velocity, q is pitch rate, and is pitch angle. Converting the Cartesian components with polar inertial components and replace x, y, z by T, D, and L. Then we have: ͳ ‫ܸ ۓ‬ሶ ൌ ሾܶ …'• ߙ െ ‫ ܦ‬െ ݉݃ •‹ ߛሿ ݉ ۖ ͳ ۖ ߛሶ ൌ ሾܶ •‹ ߙ ൅ ‫ ܮ‬െ ݉݃ …'• ߛሿ ܸ݉ ‫۔‬ ‫ܯ‬ ‫ݍ‬ሶ ൌ ۖ ‫ܫ‬௬௬ ۖ ߠሶ ൌ ‫ݍ‬ ‫ە‬ Where = – is an attack angle, V is velocity, and is flight path angle. 417 

AutomaticControlSystems,9thEdition

Chapter4Solutions

It should be mentioned that T, D, L and M are function of variables and V. Refer to the aircraft dynamics textbooks, the state equations can be written as: ߙሶ ൌ ‫ܣ‬ଵ ߙ ൅ ‫ܤ‬ଵ ‫ ݍ‬൅ ‫ܥ‬ଵ ߛ ቐ‫ݍ‬ሶ ൌ ‫ܣ‬ଶ ߙ ൅ ‫ܤ‬ଶ ‫ ݍ‬൅ ‫ܥ‬ଶ ߛ ߠሶ ൌ ‫ܣ‬ଷ ‫ݍ‬ b)

The Laplace transform of the system is: ‫ܩ‬ሺ‫ݏ‬ሻ ൌ

ߠሺ‫ݏ‬ሻ ߛሺ‫ݏ‬ሻ

By using Laplace transform, we have: ‫ߙݏ‬ሺ‫ݏ‬ሻ ൌ ‫ܣ‬ଵ ߙሺ‫ݏ‬ሻ ൅ ‫ܤ‬ଵ ‫ݍ‬ሺ‫ݏ‬ሻ ൅ ‫ܥ‬ଵ ߛሺ‫ݏ‬ሻሺͳሻ ‫ݍݏ‬ሺ‫ݏ‬ሻ ൌ ‫ܣ‬ଶ ߙሺ‫ݏ‬ሻ ൅ ‫ܤ‬ଶ ‫ݍ‬ሺ‫ݏ‬ሻ ൅ ‫ܥ‬ଶ ߛሺ‫ݏ‬ሻሺʹሻ ‫ߠݏ‬ሺ‫ݏ‬ሻ ൌ ‫ܣ‬ଷ ‫ݍ‬ሺ‫ݏ‬ሻሺ͵ሻ From equation (1): ߙሺ‫ݏ‬ሻ ൌ

‫ܥ‬ଵ ‫ܤ‬ଵ ‫ݍ‬ሺ‫ݏ‬ሻ ൅ ߛሺ‫ݏ‬ሻ ‫ ݏ‬െ ‫ܣ‬ଵ ‫ ݏ‬െ ‫ܣ‬ଵ

Substituting in equation (2) and solving for q(s): ‫ݍ‬ሺ‫ݏ‬ሻ ൌ

‫ܥ‬ଷ ሺ‫ ݏ‬െ ‫ܣ‬ଵ ሻ ൅ ‫ܣ‬ଶ ‫ܥ‬ଵ ߛሺ‫ݏ‬ሻ ‫ݏ‬ሺ‫ ݏ‬െ ‫ܣ‬ଵ ሻ െ ‫ܤ‬ଶ ሺ‫ ݏ‬െ ‫ܣ‬ଵ ሻ െ ‫ܣ‬ଶ ‫ܤ‬ଵ

Substituting above expression in equation (3) gives: ሺ‫ܥ‬ଶ ‫ ݏ‬൅ ‫ܣ‬ଶ ‫ܥ‬ଵ െ ‫ܥ‬ଶ ‫ܣ‬ଵ ሻ‫ܣ‬ଷ ߠሺ‫ݏ‬ሻ ൌ ଶ ߛ ሺ‫ݏ‬ሻ ‫ݏ‬ሾ‫ ݏ‬െ ሺ‫ܣ‬ଵ ൅ ‫ܤ‬ଶ ሻ‫ ݏ‬െ ሺ‫ܤ‬ଶ ‫ܣ‬ଵ ൅ ‫ܣ‬ଶ ‫ܤ‬ଵ ሻሿ If we consider‫ ݑ‬ൌ ߱ଶ •‹ ߱‫ݐ‬, then ‫ݕܯ‬ሷ ൅ ‫ݕܤ‬ሶ ൅ ‫ ݕܭ‬ൌ ݈݉‫ݑ‬ By using Laplace transform: ሺ‫ ݏܯ‬ଶ ൅ ‫ ݏܤ‬൅ ‫ܭ‬ሻܻሺ‫ݏ‬ሻ ൌ ݈ܷ݉ሺ‫ݏ‬ሻሺͶሻ

Which gives: ܻሺ‫ݏ‬ሻ ݈݉ ൌ ܷሺ‫ݏ‬ሻ ‫ ݏܯ‬ଶ ൅ ‫ ݏܤ‬൅ ‫ܭ‬ 418 

 Golnaraghi,Kuo

AutomaticConttrolSystems,9thEdition

Chapteer4Solutionss

 Golnarraghi,Kuo

For plotting g state flow diagram, equation u (4) muust be rewritten as: ൬‫ ݏ‬൅

‫ܭ‬ ݈݉ ‫ܤ‬ ൅ ܷሺ‫ݏ‬ሻ ൰ ܻሺ‫ݏ‬ሻ ൌ ‫ܵܯ‬ ‫ܵܯ ܯ‬

or ‫ܻݏ‬ሺ‫ݏ‬ሻ ൌ  െ

ܺሺ‫ݏݏ‬ሻ ‫ܤ‬ ‫ܤ‬ ܻሺ‫ݏ‬ሻ ൅ ܺሺ‫ݏ‬ሻ ՜ ܻ ܻሺ‫ݏ‬ሻ ൌ  െ ܻሺ‫ݏ‬ሻ ൅ ‫ܯ‬ ‫ܯ‬ ‫ݏ‬ ‫ܭ‬ ݈݉ ܺሺ‫ݏ‬ሻ ൌ െ ܻሺ‫ݏ‬ሻ ൅ ܷሺ‫ݏ‬ሻ ‫ܵܯ‬ ‫ܵܯ‬

S the state flow diagram So, m will plotteed as: ml

u

1/Ms

1 x

1/s

y

-B/M -K

Also look at seection 4-11 4-113)(a)Torqueequation: 2





d T dt

2



B dT J dt



1

Stateequations:





dt

Stated diagram:

T (t ) 

dx 2

x2



J



dx1



dt



Transsferfunction:





4( s )

1

T ( s)

s( Js  B )



B J

x2 

1

T



J



(b)Torqueequations: d T1 2





dt



2



K J

T

1

 T2 

1 J

T

K T 1  T 2

B

dT 2 dt

Statediagram:(minimumnumbeerofintegratorrs)

419 



AutomaticConttrolSystems,9thEdition

Chapteer4Solutionss

 Golnarraghi,Kuo

 

Stateequations:





dx1 dt







K B

dx 2

x1  x 2

dt

Stateequations:Let x1



dx1 dt



K B

x1 

K B

x2



Statediagram:



Tran nsferfunctionss:





41 ( s )

T 2 , x2 dx 2 dt

Bs B K

s BJs  JKs  BK

T (s)

2



(c)Torqqueequationss:



 T (t )

d T1 2





J1

dt

2

 K T 1  T 2

K J

x1 

1

T

J dT 1

T 1, and x3 x3

dx3

K

dt

J

42 ( s)

x1 

K J

x2 

1

T

J

K

s BJs  JK Ks  BK

T (s)

K T 1  T 2

2

d T2 2

J2

Stattediagram:

420 

.

dt

dt

2



AutomaticConttrolSystems,9thEdition

Chapteer4Solutionss

 Golnarraghi,Kuo

 



State eequations:sttatevariables:: x1



dx1 dt





dx 2

x2

dt

K J2

x1 

K J2

x3

dt

d 3 dx dt



41 ( s )

J2s  K

T (s)

s ª¬ J 1 J 2 s  K J 1  J 2 º¼

2

2

2

(d)Torqueequationss:



 T (t )

d Tm 2

x4

dT 1

T 1, x 4 d 4 dx

K

dt

J1

.

d dt

x1 

K J1

x3 

1

T

J1

Jm

dt

2

 K1 T m  T 1  K 2 T m  T 2

42 ( s)

K

T (s)

s ª¬ J 1 J 2 s  K J 1  J 2 º¼ 2

K1 T m  T 1



    

421 

, x3

nsferfunctionss: Tran







dT 2

T 2 , x2

2

d T1 2

J1

dt

2



K 2 T m  T 2

d T2 2

J2

dt

2



AutomaticConttrolSystems,9thEdition

Chapteer4Solutionss

 Golnarraghi,Kuo

Statediiagram: 

 Stateequatio ons: x1



dx1



 x 2  x3

dt





dx 2

K1

dt

J1

dx3

x1

dt

dT 1 dtt 

K1 Jm

x1 

dt K2

, x4

x4 

Jm

1

dT 2

T m  T 2 , x5

T

Jm

dx 4 dt

.

dt

x3  x5

dx5

K2

dtt

J2



41 ( s )

K1 ( J 2 s  K 2 )

x4 

T (s)

s ª¬ s  K1 J 2 J m  K 2 J 1 J m  K1 J 1 J 2  K 2 J 1 J 2 s  K1 K 2 J m  J 1  J 2 º¼

42 (s)

K 2 ( J 1 s  K1 )

T (s)

s ª¬ s  K1 J 2 J m  K 2 J 1 J m  K1 J 1 J 2  K 2 J 1 J 2 s  K1 K 2 J m  J 1  J 2 º¼

2

2

4

2

4



d 2T m dt



2



K1 Jm

2



2

(e)Torqqueequationss:

T m  T1 

2

K2 Jm

T m  T 2 

1 Jm

d T1 2

T

d dt

2

K1 J1

Statediagram m:

422 

dT m

, x3

Transferfuncctions:







T m  T 1, x2

T

m

 T1 

B1 dT 1 J 1 dt

d T2 2

dt

2

K2 J2

T

m

 T1 

B2 dT 2 J 2 dt

AutomaticConttrolSystems,9thEdition

Chapteer4Solutionss

 Golnarraghi,Kuo

 

 

 dx1 dt











dT 1

T m  T 1, x2

SStatevariabless: x1

Stateequatio ons: dx 2 K1 B  x 2  x3 x1  1 x 2 J1 dt J1

dt

dx3



dt

K1 Jm

dT m

, x3

x1 

dt

K2 Jm

x4 

T m  T 2 , x5

, x4

1

dx4

T

Jm

dt

x3  x 5

dT 2

.

dt

dx5

K2

dt

J2

x4 

B2 J2

x5

Transferfuncctions: K1 J 2 s  B2 s  K 2

T (s)

'(s)

2

42 (s)

K 2 J 1 s  B1 s  K1

T (s)

'(s)

2

s { J 1 J 2 J m s  J m B1  B2 s  > K1 J 2  K 2 J 1 J m  K1  K 2 J 1 J 2  B1 B2 J m @ s

'( s)



41 ( s )

2

4

3

 > B1 K 2  B2 K1 J m  B1 K 2 J 2  B2 K1 J 1 @ s  K1 K 2 J m  J 1  J 2 }

2



4-114) d T1 2

Tm (t )

(a))

Jm

dt

2

 T1

N1

T1

T3

N2 N4

T1

T2

N3 N4

T3

N3

d T3

N2

 N1 N 3

T2

T4

N4

N3 N4

dt

2

d T1 2

Tm

Jm

 

423 

JL

T4

2

JL

d T3 2

T4

dt

2



dt

T2

2

N1 N 3 N2 N4

T4

T3

T2

N1 N2

T1

2 ª ª N1 N 3 º º d 2T 1 «Jm  « » JL » 2 ¬ N 2 N 4 ¼ »¼ dt ¬«



AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

(b) d T1

d T2

2



Tm

Jm

T2

N1

dt

 N2

2

 T1

2

T1

T2

 Tm (t ) J m

d T1 dt



2

2

dt

T1

N2 N4

T2

N1 §

d T2

N2 ©

dt

2

¨ J2

T4

J

d T2

N3

 T3 2

N1 N 3

T3

2



J2

2

N3



N4

J2

J

dt

 J4

3



2

d T3 2

 JL

3

dt

d T2 2

T4

N4

J2

dt

N1

T1

2

2

N3



N4

N2

J

3

T2

N3

T3

 JL

N4

T4



d T3 2

dt

2

2 2 ª º d 2T1 § N1 · § N1 N 3 · J J J J    « m ¨ ¸ 2 ¨ ¸ 3 L » dt 2  2 ¸ dt ¹ «¬ © N2 ¹ © N2 N4 ¹ »¼

d T3 · 2

4-15)(a) 2



 Tm

Jm

 Tm

Jm

2

d Tm dt

 T1

2

d Tm

T2 d TL

2



 

Set

dt

wD L

2

JL

dt

dt

 nTL

2

T

2

 TL

N1

T1

N2

T2

2

nTm  n TL 2

Thus, D L

 2 nTL J m  n J L  2 nJ L nTm  n J L

m

T m N1 T L N 2 

nT2

§ J m  nJ · D  nT ¨ L ¸ L L © n ¹

2

 nJ L

0.

wn

d TL

2

Jm  n JL 2

2

0 Or, n 

J mTL J LTm



n

Jm

0

JL

 Optimalgearratio:

n



J mTL 2 J LTm

2

2

2

J mTL  4 J m J LTm



wherethe+signhasbeenchosen.

2 J LTm





(b)When TL

0 ,theoptimalgearratiois









n

Jm / J L 



4-16)(a)Torqueequationaboutthemotorshaft: 2



Tm

Jm

d Tm dt

2

2

 Mr

2

d Tm dt

2

 Bm

dT m

 

Relationbetweenlinearandrotationaldisplacements:





y

dt

rT m 

(b)TakingtheLaplacetransformoftheequationsinpart(a),withzeroinitialconditions,wehave 





Tm ( s )

J

m

 Mr

2

s 4 2

m

( s )  Bm s4 m ( s )

424 

Y (s)

r4m (s) 

AutomaticConttrolSystems,9thEdition

Chapteer4Solutionss

 Golnarraghi,Kuo

Transfferfunction: 



Y ( s)



r

s ª¬ J m  Mr

Tm ( s )

r

s  B

m

º¼

4-117)(a) d Tm 2



 Tm

Jm

dt

2

 r T1  T2

2

 T1  T2

M

d y dt

2

K 2 rT m  rT p

T1 d Tm 2

Thu us, Tm

Jm

dtt

2

K 2 rT m  y

 r K1  K 2 rT m  y

T2 2

M

d y dt

2

K

K1 y  rT m 

1

 K 2 rT m  y 



 (c)Stateequations: 



dx1

rx3  x2

dt

dx2

K1  K 2

dt

M

x1

dx3

 r K1  K 2

dt

Jm

(d)Transferfunction: 





r K1  K 2

Y ( s) Tm ( s )

s ¬ª J m Ms  K1  K 2 J m  rM º¼ 2

2

(e)Charaacteristicequaation: 





 s

2

ª¬ J m Ms 2  K1  K 2 J m  rM º¼ 0 

4-118) (a)Systeemequations: 425 



x1 

1 Jm

Tm 

AutomaticConttrolSystems,9thEdition







 Tm

J

K i ia

 TD

d

m

 JL

e

(sec)

V

dZ m dt

r b

Chapteer4Solutionss

 BmZ m

b

Ra ia  La

ea

Ks y

Ea ( s )

dia dt

 Golnarraghi,Kuo

 K bZ m

y

nT m

y

y t  TD 

KGc ( s ) E ( s ) 

Blockkdiagram:



  



(b)Forw wardpathtransferfunction n: 

Y (s) E (s)





KK i nGc ( s )e

 TD s

s ^ Ra  La s > J m  J L s  Bm @  K b K i `



Clossedlooptranssferfunction:



Y ( s) R(s)

KK K i nGc ( s )e

 TD s

s Ra  La s > J m  J L s  Bm @  K b K i s  KGc ( s ) K i ne



 TD s

4-119) (a)Torquueequations: d Tm 2





 Tm (t )

Jm

dt

2

 Bm

dT m dt

 K T m  T L

K T m  T L

 Statediagram:

426 

d TL 2

JL

dt

2

 BL

dT L dt



AutomaticConttrolSystems,9thEdition

Chapteer4Solutionss

 Golnarraghi,Kuo

(b)Transsferfunctions: 

4 L ( s)

K

4m (s)

J L s  BL s  K

Tm ( s )

'(s)

Tm ( s )

'( s)

2

(c)Charaacteristicequaation: '( s )

'(s)

s ª¬ J m J L s  Bm J L  BL J m s  KJ m  KJ L  Bm BL s  Bm K º¼  3

2

0

dystateperforrmance: Tm ( t ) (d)Stead

Tm

constant. t Tm ( s )

Tm

.

s

J L s  BL s  K

1

J m J L s  Bm J L  BL J m s  KJ K m  KJ L  Bm BL s  Bm K

Bm

2



 lim Z m (t )

lim s: m ( s )

t of

s o0

lim s o0

3

2



Thuss,inthesteadyystate,Z m

Z L .



(e)TheesteadystatevvaluesofZ m and a Z L donotdependon J m and J L .



4-220)(a)Torqqueequation:(AbouttheceenterofgravityyC) 2



 J



d T dt

2

Ts d 2 sin G  Fd d1

JD D 1

Fa d1

2



Thuss,

J

d T dt

2

2

(b) Js 4 ( s )  K F d14 ( s )

K F d1T

sin G # G 

2

Ts d 2G  K F d1T

J

d T dt

2

 K F d1T

Ts d 2G 

Ts d 2 ' ( s ) 

(c)With hCandPintercchanged,thetorqueequationaboutCis:







Ts d1  d 2 G  FD d 2

dT 2

J

dt

2

Ts d1  d 2 G  K F d 2T

427 

dT 2

J

dt

2





AutomaticControlSystems,9thEdition





Chapter4Solutions

Ts d1  d 2 ' ( s )

 Js 4 ( s )  K F d 2 4 ( s ) 2

 Golnaraghi,Kuo

4( s )

Ts d1  d 2

'(s)

Js  K F d 2 2



4-21)(a)Nonlineardifferentialequations: 



dx ( t )



dv ( t )

v(t )

dt



With Ra

0 ,I ( t )

dt e( t )

K f i f (t )

Kb v ( t )

 k ( v )  g ( x )  f (t )

 Bv ( t )  f ( t ) 

K f i f (t )

Then, ia ( t )

2



KiI ( t )ia ( t )

 f ( t )

Ki e ( t ) 2 Kb K f

dv ( t )

Thus,

.

2

K f ia ( t )

v (t )

dt

 Bv ( t ) 

Ki 2 Kb K f

(b)Stateequations: ia ( t ) asinput. 







dx ( t )

dv ( t )

v (t )

dt

dt

2

 Bv ( t )  Ki K f ia ( t ) 

(c)Stateequations:I ( t ) asinput. f (t )







2

K i K f ia ( t )

ia ( t )

 dx ( t ) dt

v (t )

dv ( t ) dt

 Bv ( t ) 

428 

i f (t )

I (t ) Kf Ki Kf

 2

I (t )

e( t 0 Kb K f v ( t ) 2

2

v (t )

e (t ) 



AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

4-22) Define as the angle between mass m and the horizontal axis (positive in c..c.w. direction): m =t

ym

Use Newton's second law: m(  y   ym )  Fm y Fm  By  Ky ( M  m) 

 ym

eZ 2 sin Zt

Ÿ My  By  Ky

meZ 2 sin Zt

Where M is the Mass of the overall block system. M-m is the mass of the block alone.

Y meZ 2 R Ms 2  Bs  K Zero i.c. and input r (t ) sin Zt

G ( s)

Note T Zt . So in case of a step response as asked in the question,  is a step input and angle  increases with time – i.e. it is a ramp function. Hence, ym is a sinusoidal function, where the Laplace transform of a Z sine function is sin(Zt ) 2 s  Z2 Pick values of the parameters and run MATLAB. See toolbox 5-8-2 clear all m=20.5 %kg M=60 %kg K=100000 %N/m Om=157 %rad/s B=60 %N-m/s e=0.15 %m G=tf([m*e*Om^2],[M B K]) t=0:0.01:1; u=1*sin(Om*t); lsim(G,u,t) xlabel( 'Time(sec)'); ylabel('Amplitude');

429 

AutomaticControlSystems,9thEdition

Chapter4Solutions

m = 20.5000 M = 60 K = 100000 Om = 157 B = 60 e = 0.1500 Transfer function: 7.58e004 ---------------------60 s^2 + 60 s + 100000

430 

 Golnaraghi,Kuo

AutomaticControlSystems,9thEdition

4-23) a)

Chapter4Solutions

summation of vertical forces gives: ൜

‫ݕܯ‬ሷ ൅ ሺʹ‫ ܭ‬൅ ݇ሻ‫ ݕ‬െ ݇‫ ݔ‬ൌ ‫ܨ‬ሺͳሻ ݉‫ݔ‬ሷ െ ‫ ݕܭ‬൅ ݇‫ ݔ‬ൌ Ͳሺʹሻ

If we consider ‫ݕ‬ሶ ൌ ‫ݍ‬and ‫ݔ‬ሶ ൌ ‫ݎ‬, then: ‫ݍܯ‬ሶ ൅ ሺʹ‫ ܭ‬൅ ݇ሻ‫ ݕ‬െ ݇‫ ݔ‬ൌ ‫ܨ‬ ൜ ݉‫ݎ‬ሶ െ ‫ ݕܭ‬൅ ݇‫ ݔ‬ൌ Ͳ The state-space model is: Ͳ ‫ۍ‬ Ͳ ‫ݕ‬ሶ ‫ێ‬െʹ‫ ܭ‬െ ݇ ൦‫ݔ‬ሶ ൪ ൌ  ‫ێ‬ ‫ݍ‬ሶ ‫ܯ ێ‬ ‫ܭ‬ ‫ݎ‬ሶ ‫ێ‬ ‫݉ ۏ‬ ‫ܩ‬ሺ‫ݏ‬ሻ ൌ

b)

Ͳ Ͳ

ͳ Ͳ

݇

Ͳ

݇

Ͳ

Ͳ Ͳ ͳ‫ݕ ې‬ ‫ېͲۍ‬ ‫ۑ‬ ‫ۑ ێ‬ Ͳ‫ ۑ‬቎ ‫ݔ‬ ቏ ൅ ‫ܨۑͳێ‬ ‫ݍ‬ ‫ۑ‬ ‫ۑ ܯێ‬ ‫ݎ ۑ‬ ‫ۏ‬ Ͳ‫ے‬ Ͳ‫ے‬

௒ሺ௦ሻ ௑ሺ௦ሻ

By applying Laplace transform for equations (1) and (2), we obtain: ሾ‫ ݏܯ‬ଶ ൅ ሺʹ‫ ܭ‬൅ ݇ሻሿܻሺ‫ݏ‬ሻ െ ݇ܺሺ‫ݏ‬ሻ ൌ ‫ܨ‬ሺ‫ݏ‬ሻ ൜ ሺ݉‫ ݏ‬ଶ ൅ ݇ሻܺሺ‫ݏ‬ሻ ൌ ܻ݇ሺ‫ݏ‬ሻ Which gives: ܺሺ‫ݏ‬ሻ ൌ

݇ ܻሺ‫ݏ‬ሻ ൅݇

݉‫ ݏ‬௦

and ቈ‫ ݏܯ‬ଶ ൅ ሺʹ‫ ܭ‬൅ ݇ሻ െ

݇ଶ ቉ ܻሺ‫ݏ‬ሻ ൌ ‫ܨ‬ሺ‫ݏ‬ሻ ݉‫ ݏ‬ଶ ൅ ݇

Therefore: ܻሺ‫ݏ‬ሻ ݉‫ ݏ‬ଶ ൅ ݇ ൌ ‫ܨ‬ሺ‫ݏ‬ሻ ‫ ݏ݉ܯ‬ସ ൅ ሺ‫ ݇ܯ‬൅ ʹ‫ ݉ܭ‬൅ ݉݇ሻ‫ ݏ‬ଶ ൅ ʹ‫݇ܭ‬

4-24) a) Summation of vertical forces gives: ൜

‫ݕܯ‬ሷ ൅ ሺ‫ ܤ‬൅ ܾሻ‫ݕ‬ሶ െ ܾ‫ݔ‬ሶ ൅ ሺ‫ ܭ‬൅ ݇ሻ‫ ݕ‬െ ݇‫ ݔ‬ൌ ‫ܨ‬ ݉‫ݔ‬ሷ െ ܾ‫ݕ‬ሶ ൅ ܾ‫ݔ‬ሶ െ ݇‫ ݕ‬െ ݇‫ ݔ‬ൌ Ͳ

Consider ‫ݕ‬ሶ ൌ ‫ ݍ‬and ‫ݔ‬ሶ ൌ ‫ݎ‬, then 431 

 Golnaraghi,Kuo

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

‫ݍܯ‬ሶ ൅ ሺ‫ ܤ‬൅ ܾሻ‫ ݍ‬െ ܾ‫ ݎ‬൅ ሺ‫ ܭ‬൅ ݇ሻ‫ ݕ‬െ ݇‫ ݔ‬ൌ ‫ܨ‬ ൜ ݉‫ݎ‬ሶ െ ܾ‫ ݍ‬൅ ܾ‫ ݎ‬െ ݇‫ ݕ‬െ ݇‫ ݔ‬ൌ Ͳ So, the state-space model of the system is: Ͳ Ͳ ‫ۍ‬ Ͳ Ͳ ‫ݕ‬ሶ ‫ێ‬െሺ‫ ܭ‬൅ ݇ሻ ‫݇ܭ‬ ൦‫ݔ‬ሶ ൪ ൌ  ‫ێ‬ ‫ݍ‬ሶ ‫ܯ‬ ‫ܯ‬ ‫ێ‬ ݇ ݇ ‫ݎ‬ሶ ‫ێ‬ ‫ۏ‬ ‫ܯ‬ ݉

ͳ Ͳ ‫ܤ‬൅ܾ െ ‫ܯ‬ ܾ ݉

Ͳ Ͳ ͳ ‫ݕ ې‬ ‫ېͲۍ‬ ‫ۑ‬ ܾ ‫ ۑ‬቎‫ ݔ‬቏ ൅ ‫ܨ ۑۑ ͳ ێێ‬ ‫ݍ ۑ ܯ‬ ‫ۑ ܯێ‬ ܾ‫ݎ ۑ‬ ‫ےͲۏ‬ െ ‫ے‬ ݉

b) The Laplace transform of the system is defined by: ܻሺ‫ݏ‬ሻ ‫ܩ‬ሺ‫ݏ‬ሻ ൌ ܺሺ‫ݏ‬ሻ where ൫‫ ݏܯ‬ଶ ൅ ሺ‫ ܤ‬൅ ܾሻ‫ ݏ‬൅ ሺ‫ ܭ‬൅ ݇ሻ൯ܻሺ‫ݏ‬ሻ െ ሺܾ‫ ݏ‬൅ ‫ܭ‬ሻܺሺ‫ݏ‬ሻ ൌ ‫ܨ‬ሺ‫ݏ‬ሻ ቊ ሺ݉‫ ݏ‬ଶ ൅ ܾ‫ ݏ‬െ ݇ሻܺሺ‫ݏ‬ሻ ൌ ሺܾ‫ ݏ‬൅ ݇ሻܻሺ‫ݏ‬ሻ as a result: ܺሺ‫ݏ‬ሻ ൌ

ܾ‫ ݏ‬൅ ݇ ܻሺ‫ݏ‬ሻ ݉‫ ݏ‬ଶ ൅ ܾ‫ ݏ‬െ ݇

Substituting into above equation: ൣ൫‫ ݏܯ‬ଶ ൅ ሺ‫ ܤ‬൅ ܾሻ‫ ݏ‬൅ ሺ‫ ܭ‬൅ ݇ሻ൯ሺ݉‫ ݏ‬ଶ ൅ ܾ‫ ݏ‬൅ ݇ሻ െ ሺܾ‫ ݏ‬൅ ݇ሻଶ ൧ܻሺ‫ݏ‬ሻ ൌ ሺ݉‫ ݏ‬ଶ ൅ ܾ‫ ݏ‬െ ݇ሻ‫ܨ‬ሺ‫ݏ‬ሻ ܻሺ‫ݏ‬ሻ ݉‫ ݏ‬ଶ ൅ ܾ‫ ݏ‬െ ݇ ൌ ܺሺ‫ݏ‬ሻ ሾ‫ ݏܯ‬ଶ ൅ ሺ‫ ܤ‬൅ ܾሻ‫ ݏ‬൅ ሺ‫ ܭ‬൅ ݇ሻሿሾ݉‫ ݏ‬ଶ ൅ ܾ‫ ݏ‬െ ݇ሿ െ ሺܾ‫ ݏ‬൅ ݇ሻଶ

4-25) a) According to the circuit: ‫ݒ‬௜௡ െ ‫ݒ‬ଵ ݀ ‫ݒ‬௢௨௧ െ ‫ݒ‬ଵ ൅ ‫ݒ ܥ‬ଵ ൅ ൌͲ ݀‫ݐ‬ ʹܴ ʹܴ ‫݀ ܥ‬ ‫ݒ‬ଶ ‫݀ ܥ‬ ሺ‫ݒ‬௜௡ െ ‫ݒ‬ଶ ሻ െ ൅ ሺ‫ ݒ‬െ ‫ݒ‬ଶ ሻ ൌ Ͳ ܴ ʹ ݀‫ ݐ‬௢௨௧ ‫ݐ݀ ʹ ۔‬ ‫݀ ܥ‬ ‫ݒ‬ଵ െ ‫ݒ‬௢௨௧ ۖ ሺ‫ݒ‬ଶ െ ‫ݒ‬௢௨௧ ሻ ൅ ൌͲ ‫ە‬ ʹ ݀‫ݐ‬ ʹܴ ‫ۓ‬ ۖ

By using Laplace transform we have:

432 

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

୧୬ ሺ•ሻ െ ଵ ሺ•ሻ ୭୳୲ ሺ•ሻ െ ଵ ሺ•ሻ ൅ •ଵ ሺ•ሻ ൅ ൌͲ ʹ ʹ • ଶ ሺ•ሻ • ൫୧୬ ሺ•ሻ െ ଶ ሺ•ሻ൯ െ ൅ ൫୭୳୲ ሺ•ሻ െ ଶ ሺ•ሻ൯ ൌ Ͳ ʹ  ‫ʹ۔‬ ଵ ሺ•ሻ െ ୭୳୲ ሺ•ሻ • ۖ ൫ ሺ•ሻ െ ୭୳୲ ሺ•ሻ൯ ൅ ൌͲ ‫ە‬ ʹ ଶ ʹ ‫ۓ‬ ۖ

From above equations: ͳ ൫ ሺ•ሻ ൅ ୭୳୲ ሺ•ሻ൯ ʹሺ ൅ ͳሻ ୧୬  ‫ ۔‬ሺ•ሻ ൌ ൫ ሺ•ሻ ൅ ୭୳୲ ሺ•ሻ൯ ଶ ʹሺ ൅ ͳሻ ୧୬ ‫ە‬ ‫ۓ‬ଵ ሺ•ሻ ൌ

Substituting V1(s) and V2(s) into preceding equations, we obtain: ܸ௢௨௧ ሺ‫ݏ‬ሻ ܴଶ ‫ ܥ‬ଶ ‫ ݏ‬ଶ ൅ ͳ ൌ ଶ ଶ ଶ ܴ ‫ ݏ ܥ‬൅ Ͷܴ‫ ݏܥ‬൅ ͳ ܸ௜௡ ሺ‫ݏ‬ሻ b)

Measuring Vout requires a load resistor, which means:

i1 Vin

i2 VC1

Then we have: ݀ ‫ܮۓ‬ଵ ݅ଵ ൌ ‫ݒ‬௜௡ െ ‫݅ݎ‬ଵ െ ‫ݒ‬஼ଵ ۖ ݀‫ݐ‬ ݀ ۖ ۖ ‫ܥ‬ଵ ‫ݒ‬஼ଵ ൌ ݅ଵ െ ݅ଶ ݀‫ݐ‬ ݀ ‫ܮ ۔‬ ݅ ൌ ‫ݒ‬஼ଵ െ ‫ݒ‬஼ଶ ଶ ݀‫ ݐ‬ଶ ۖ ۖ ۖ ‫ ݒ ݀ ܥ‬ൌ ݅ െ ‫ݒ‬஼ଶ ଶ ‫ ە‬ଶ ݀‫ ݐ‬஼ଶ ܴ ൅ ܴ௅ When ‫ݒ‬௢௨௧ ൌ

ܴ௅ ‫ݒ‬ ܴ ൅ ܴ௅ ஼ଶ

If RL >>R, then ‫ݒ‬௢௨௧  ൌ  ‫ݒ‬஼ଶ 433 

RL VC 2

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

By using Laplace transform we have: ‫ܮ‬ଵ ‫ܫݏ‬ଵ ሺ‫ݏ‬ሻ ൌ ܸ௜௡ ሺ‫ݏ‬ሻ െ ‫ܫݎ‬ଵ ሺ‫ݏ‬ሻ െ ܸ஼ଵ ሺ‫ݏ‬ሻ ‫ۓ‬ ‫ܥ‬ଵ ‫ܸݏ‬஼ଵ ሺ‫ݏ‬ሻ ൌ ‫ܫ‬ଵ ሺ‫ݏ‬ሻ െ ‫ܫ‬ଶ ሺ‫ݏ‬ሻ ۖ ‫ܮ‬ଶ ‫ܫݏ‬ଶ ሺ‫ݏ‬ሻ ൌ ܸ஼ଵ ሺ‫ݏ‬ሻ െ ܸ஼ଶ ሺ‫ݏ‬ሻ ‫۔‬ ܸ஼ଶ ሺ‫ݏ‬ሻ ۖ ‫ܥ‬ଶ ‫ܸݏ‬஼ଶ ሺ‫ݏ‬ሻ ൌ ‫ܫ‬ଶ ሺ‫ݏ‬ሻ െ ‫ە‬ ܴ ൅ ܴ௅ Therefore: ‫ܫ‬ଶ ሺ‫ݏ‬ሻ ൌ ܸ஼ଵ ሺ‫ݏ‬ሻ ൌ

‫ܥ‬ଶ ሺܴ ൅ ܴ௅ ሻ ൅ ͳ ܸ஼ଶ ሺ‫ݏ‬ሻ ܴ ൅ ܴ௅

‫ܮ‬ଶ ‫ܥ‬ଶ ‫ݏ‬ሺܴ ൅ ܴ௅ ሻ ൅ ‫ ݏ‬൅ ሺܴ ൅ ܴ௅ ሻ ܸ஼ଶ ሺ‫ݏ‬ሻ ܴ ൅ ܴ௅

‫ܮ‬ଶ ‫ܥ‬ଶ ‫ܥ‬ଵ ‫ ݏ‬ଶ ሺܴ ൅ ܴ௅ ሻ ൅ ‫ܥ‬ଵ ‫ ݏ‬ଶ ൅ ‫ܥ‬ଵ ‫ݏ‬ሺܴ ൅ ܴ௅ ሻ ൅ ‫ܥ‬ଶ ሺܴ ൅ ܴ௅ ሻ ൅ ͳ ‫ܫ‬ଵ ሺ‫ݏ‬ሻ ൌ ܸ஼ଶ ܴ ൅ ܴ௅ ௏಴మ ሺ௦ሻ ௏೔೙ ሺ௦ሻ

can be obtained by substituting above expressions into the first equation of the state variables

of the system. 4-26) a) The charge q is related to the voltage across the plate:

‫ ݍ‬ൌ ‫ܥ‬ሺ݀ሻ‫ݒ‬஼

The force fv produced by electric field is: ݂௩ ൌ

‫ݍ‬ଶ ʹߝ‫ܣ‬

Since the electric force is opposes the motion of the plates, then the equation of the motion is written as: ‫݀ܯ‬ሷ ൅ ‫݀ܤ‬ሶ ൅ ‫ ݀ܭ‬൅ ൣ‫݊݃ݏ‬൫݀ሶ൯൧݂௩ ൌ ݂ሺ‫ݐ‬ሻ The equations for the electric circuit are: ݀ ‫ ݒ‬ൌ ܴ݅ ൅ ‫ ݅ ܮ‬൅ ‫ݒ‬஼ ݀‫ݐ‬ ൞ ݀‫ݒ‬஼ ‫ܥ‬ ൌ݅ ݀‫ݐ‬ As we know, ݅ ൌ 

ௗ ௗ௧

‫ ݍ‬ൌ ‫ݍ‬ሶ and ‫ ݍ‬ൌ ‫ݒܥ‬஼ , then:

434 

AutomaticControlSystems,9thEdition

Chapter4Solutions

‫ݍ‬ ‫ ݒ‬ൌ ܴ‫ݍ‬ሶ ൅ ‫ݍܮ‬ሷ ൅ ‫ܥ‬ ൞ ݀‫ݒ‬஼ ‫ܥ‬ ൌ݅ ݀‫ݐ‬ Since ‫ܥ‬ሺ݀ሻ ൌ

ఌ஺ ௗ

, then : ‫ݍ‬ଶ ‫݀ܯۓ‬ሷ ൅ ‫݀ܤ‬ሶ ൅ ‫ ݀ܭ‬൅ ൣ‫݊݃ݏ‬൫݀ሶ൯൧ ൌ ݂ሺ‫ݐ‬ሻ ʹߝ‫ܣ‬ ۖ ݀‫ݍ‬ ‫ݒ‬஼ ൌ ܴ‫ݍ‬ሶ ൅ ‫ݍܮ‬ሷ ൅ ߝ‫ܣ‬ ‫۔‬ ݀‫ݒ‬஼ ۖ ‫ܥ‬ ൌ ‫ݍ‬ሶ ‫ە‬ ݀‫ݐ‬

b) As ‫ ݍ‬ൌ ‫ݒܥ‬஼ then ‫ ݍ‬ଶ ൌ ‫ݒݍܥ‬஼ If ‫݊݃ݏ‬൫݀ሶ ൯ ൌ ͳ ‫ݒݍܥ‬஼ ൌ ݂ሺ‫ݐ‬ሻ ‫݀ܯۓ‬ሷ ൅ ‫݀ܤ‬ሶ ൅ ‫ ݀ܭ‬൅ ʹߝ‫ܣ‬ ۖ ݀‫ݍ‬ ‫ݒ‬஼ ൌ ܴ‫ݍ‬ሶ ൅ ‫ݍܮ‬ሷ ൅ ߝ‫ܣ‬ ‫۔‬ ݀‫ݒ‬ ۖ ஼ ‫ܥ‬ ൌ ‫ݍ‬ሶ ‫ە‬ ݀‫ݐ‬ Then the transfer function is:

435 

 Golnaraghi,Kuo

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

‫ܳܥ‬ሺ‫ݏ‬ሻ ‫ܸ כ‬஼ ሺ‫ݏ‬ሻ ൌ ‫ܨ‬ሺ‫ݏ‬ሻ ʹߝ‫ܣ‬ ‫ܦ‬ሺ‫ݏ‬ሻ ‫ܳ כ‬ሺ‫ݏ‬ሻ ܸ஼ ሺ‫ݏ‬ሻ ൌ ሺ‫ ݏܮ‬ଶ ൅ ܴ‫ݏ‬ሻܳሺ‫ݏ‬ሻ ൅ ߝ‫ܣ‬ ‫ܸܥ‬஼ ሺ‫ݏ‬ሻ ൌ ܳሺ‫ݏ‬ሻ

‫ۓ‬ሺ‫ ݏܯ‬ଶ ൅ ‫ ݏܤ‬൅ ‫ܭ‬ሻ‫ܦ‬ሺ‫ݏ‬ሻ ൅ ۖ ‫۔‬ ۖ ‫ە‬

If ‫݊݃ݏ‬൫݀ሶ ൯ ൌ െͳ ‫ݒݍܥ‬஼ ൌ ݂ሺ‫ݐ‬ሻ ‫݀ܯۓ‬ሷ ൅ ‫݀ܤ‬ሶ ൅ ‫ ݀ܭ‬െ ʹߝ‫ܣ‬ ۖ ݀‫ݍ‬ ‫ݒ‬஼ ൌ ܴ‫ݍ‬ሶ ൅ ‫ݍܮ‬ሷ ൅ ߝ‫ܣ‬ ‫۔‬ ݀‫ݒ‬஼ ۖ ‫ܥ‬ ൌ ‫ݍ‬ሶ ‫ە‬ ݀‫ݐ‬ Then the transfer function is: ‫ܳܥ‬ሺ‫ݏ‬ሻ ‫ܸ כ‬஼ ሺ‫ݏ‬ሻ ൌ ‫ܨ‬ሺ‫ݏ‬ሻ ʹߝ‫ܣ‬ ‫ܦ‬ሺ‫ݏ‬ሻ ‫ܳ כ‬ሺ‫ݏ‬ሻ ܸ஼ ሺ‫ݏ‬ሻ ൌ ሺ‫ ݏܮ‬ଶ ൅ ܴ‫ݏ‬ሻܳሺ‫ݏ‬ሻ ൅ ߝ‫ܣ‬ ‫ܸܥ‬஼ ሺ‫ݏ‬ሻ ൌ ܳሺ‫ݏ‬ሻ

‫ۓ‬ሺ‫ ݏܯ‬ଶ ൅ ‫ ݏܤ‬൅ ‫ܭ‬ሻ‫ܦ‬ሺ‫ݏ‬ሻ െ ۖ ‫۔‬ ۖ ‫ە‬

4-27) a) The free body diagram is:

where F is required force for holding the core in the equilibrium point against magnetic field b)

The current of inductor, i, and the force, F, are function of flux, , and displacement, x. Also, we know that ݅ൌ

ߔ ‫ܮ‬ሺ‫ݔ‬ሻ

436 

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

The total magnetic field is: ః

ܹሺߔǡ ‫ݔ‬ሻ ൌ න

ߔଶ ߔ ݀ߔ ൌ ʹ‫ܮ‬ሺ‫ݔ‬ሻ ‫ܮ‬ሺ‫ݔ‬ሻ

where W is a function of electrical and mechanical power exerted to the inductor, so: μ Ȱ ൌ μȰ ሺšሻ μ Ȱଶ ݀‫ܮ‬ሺ‫ݔ‬ሻ ‫۔‬ ൌ  ൌ െ ۖ μš ʹଶ ሺšሻ ݀‫ݔ‬ ‫ە‬ ‫ۓ‬ ۖ

‹ ൌ

As v = ߔሶ, then: ݀݅ ݀‫ܮ‬ሺ‫ݔ‬ሻ ൅ ݅‫ݔ‬ሶ ݀‫ݐ‬ ݀‫ݐ‬ ͳ ݀‫ܮ‬ሺ‫ݔ‬ሻ ଶ ‫ ܨ‬ൌെ ݅  ʹ ݀‫ݔ‬

‫ ݒ‬ൌ ‫ܮ‬ሺ‫ݔ‬ሻ

c)

Changing the flux requires a sinusoidal movement, and then we can conclude that: ‫ ݔ‬ൌ ‫ݐ߱ ݊݅ݏ ܣ‬ if the inductance is changing relatively, then L(x) = Lx, where L is constant. Also, the current is changing with the rate of changes in displacement. It means: ‹ ൌ െšሶ So: ݅ ൌ െ‫ݐ߱ ݏ݋ܿ ߱ܤܣ‬ ‫ܮ‬ሺ‫ݔ‬ሻ  ൌ ‫ݐ߱݊݅ݏܣܮ‬ Substituting these equations into the state-space equations gives: Ö ‫ ݒ‬ൌ ‫ݐ߱ ݊݅ݏ ܣܮ‬ሺ‫߱ ܤܣ‬ଶ ‫ݐ߱ ݊݅ݏ‬ሻ ൅ ‫ܮ‬ሺെ‫ݐ ߱ݏ݋ܿ ߱ܤܣ‬ሻሺ‫ݐ߱ ݏ݋ܿ ߱ܣ‬ሻ ൌ ‫ܣܤܮ‬ଶ ߱ଶ ሺ‫݊݅ݏ‬ଶ ߱‫ ݐ‬െ ܿ‫ ݏ݋‬ଶ ߱‫ݐ‬ሻ ͳ ‫ ܨ‬ൌ െ ‫ܮ‬ሺ‫ݐ߱ ݏ݋ܿ ߱ܤܣ‬ሻଶ ʹ Therefore: ሺ•ሻ ʹ ൌ ࣦ ൜െ ሾ–ƒଶ ɘ ‫ ݐ‬െ ͳሿൠ  ሺ•ሻ 437



AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

4-28) a) The free body diagram is:

where F is the external force required for holding the plate in the equilibrium point against the electrical field. b) The voltage of capacitors, ‫ݒ‬, and the force, ‫ܨ‬, are function of charge, ‫ݍ‬, and displacement, ‫ݔ‬. Also, we know ‫ݒ‬ൌ

‫ݍ‬ ‫ܥ‬ሺ‫ݔ‬ሻ

The total electrical force between plates is: ௤

ܹሺ‫ݍ‬ǡ ‫ݔ‬ሻ ൌ  න

‫ݍ‬ଶ ‫ݍ‬ ݀‫ ݍ‬ൌ ʹ‫ܥ‬ሺ‫ݔ‬ሻ ‫ܥ‬ሺ‫ݔ‬ሻ

Where W is a function of electrical and mechanical power exerted to the capacitor, so: ߲ܹ ‫ݍ‬ ൌ ߲‫ݍ‬ ‫ܥ‬ሺ‫ݔ‬ሻ ߲ܹ ‫ ݍ‬ଶ ݀‫ܥ‬ሺ‫ݔ‬ሻ ‫۔‬ ‫ܨ‬ ൌ  ൌ െ ۖ ߲‫ݔ‬ ʹ‫ ܥ‬ଶ ሺ‫ݔ‬ሻ ݀‫ݔ‬ ‫ە‬ ‫ۓ‬ ۖ

As ݅ ൌ

ௗ௤ ௗ௧

‫ݒ‬ൌ

, then:

c)

݀‫ܥ݀ ݒ‬ሺ‫ݔ‬ሻ ൅ ‫ݔݒ‬ሶ ݀‫ݐ‬ ݀‫ݐ‬ ͳ ݀‫ܥ‬ሺ‫ݔ‬ሻ ଶ ‫ݒ‬ ‫ ܨ‬ൌെ ʹ ݀‫ݔ‬

݅ ൌ ‫ܥ‬ሺ‫ݔ‬ሻ

The same as Problem 4.28, ‫ ݔ‬ൌ ‫ݐ ߱݊݅ݏ ܣ‬ Consider: ൝ ‫ܥ‬ሺ‫ݔ‬ሻ ൌ ‫ݔܥ‬ ‫ ݒ‬ൌ െ‫ݔܤ‬ሶ Then solve the equations.

438 

AutomaticControlSystems,9thEdition

Chapter4Solutions

4-29) According to the circuit: ‫ݒ‬௜௡ െ ‫ ̴ݒ ̴ݒ‬െ ‫ݒ‬௢௨௧ ൌ ‫ݎ‬ ܴ or ‫ ̴ݒ‬ൌ

ܴ ‫ݎ‬ ‫ݒ‬௜௡ ൅ ‫ݒ‬ ܴ൅‫ݎ‬ ܴ ൅ ‫ ݎ‬௢௨௧

As an op-amp is modeled with the following equation: ‫ܣ‬ ሾ‫ ݒ‬െ ‫̴ݒ‬ሿ ‫ݒ‬௢௨௧ ൌ ‫ݏ‬൅ͳ ା Then: ‫ܣ‬ ܴ ܴ‫ݎ‬ ൤‫ݒ‬௜௡ െ ‫ݒ‬௜௡ െ ‫ ݒ‬൨ ‫ݏ‬൅ͳ ܴ൅‫ݎ‬ ܴ ൅ ‫ ݎ‬௢௨௧ ‫ݎ‬ ‫ݎ‬ ‫ܣ‬ ‫ݒ‬௜௡ െ ൌ ‫ ݒ‬ቃ ቂ ܴ ൅ ‫ ݎ‬௢௨௧ ‫ݏ‬൅ͳ ܴ൅‫ݎ‬ ‫ݎܣ‬ ሺ‫ ݒ‬െ ‫ݒ‬௢௨௧ ሻ ൌ ሺ‫ ݏ‬൅ ͳሻሺܴ ൅ ‫ݎ‬ሻ ௜௡

‫ݒ‬௢௨௧ ൌ

‫ݎܣ‬ ‫ݒ‬௢௨௧ ‫ݎܣ‬ ሺ‫ ݏ‬൅ ͳሻሺܴ ൅ ‫ݎ‬ሻ ൌ ൌ ‫ݎܣ‬ ሺ‫ ݏ‬൅ ͳሻሺܴ ൅ ‫ݎ‬ሻ ൅ ‫ݎܣ‬ ‫ݒ‬௜௡ ͳ൅ ሺ‫ ݏ‬൅ ͳሻሺܴ ൅ ‫ݎ‬ሻ

4-30) a) Positive feedback ratio: ‫ܨ‬௣ ൌ

‫ݎ‬ ‫ ݎ‬൅ ܴ௅

b) Negative feedback ratio: ‫ܨ‬ே ൌ

ܴ௜௡ ܴ௜௡ ൅ ܴ௙

c) According to the circuit: ‫ݒ‬௜௡ െ ‫ ିݒ ିݒ‬െ ‫ݒ‬௢௨௧ ൌ ܴ௜௡ ܴ௙ ൞ ‫ ݒ‬െ‫ݒ‬ ‫ݒ‬ା ௢௨௧ ା ൌ ܴ௅ ‫ݎ‬ Therefore: 439 

 Golnaraghi,Kuo

AutomaticControlSystems,9thEdition

‫ ିݒۓ‬ൌ ‫۔‬ ‫ە‬

Chapter4Solutions

ܴ௙ ܴ௜௡ ‫ݒ‬௜௡ ൅ ‫ݒ‬ ൌ ሺͳ െ ‫ܨ‬ே ሻ‫ݒ‬௜௡ ൅ ‫ܨ‬ே ‫ݒ‬௢௨௧ ܴ௜௡ ൅ ܴ௙ ܴ௜௡ ൅ ܴ௙ ௢௨௧ ‫ݎ‬ ‫ݒ‬ା ൌ ‫ݒ‬ ൌ ‫ܨ‬௣ ‫ݒ‬௢௨௧ ‫ ݎ‬൅ ܴ௅ ௢௨௧

As ‫ݒ‬௢௨௧ ൌ

ͳͲ଻ ሾ‫ ݒ‬െ ‫ ିݒ‬ሿ ‫ݏ‬൅ͳ ା

then: ‫ݒ‬௢௨௧

ͳͲ଻ ൌ ൣ‫ ݒ ܨ‬െ ሺͳ െ ‫ܨ‬ே ሻ‫ݒ‬௜௡ െ ‫ܨ‬ே ‫ݒ‬௢௨௧ ൧ ‫ ݏ‬൅ ͳ ௣ ௢௨௧

which gives: ‫ݒ‬௢௨௧ ͳ െ ‫ܨ‬ே ൌ ଻ ‫ݒ‬௜௡ ͳͲ ൣ‫ ݏ‬൅ ͳ െ ͳͲ଻ ൫‫ܨ‬௣ ൅ ‫ܨ‬ே ൯൧

It is stable when ͳ െ ͳͲ଻ ሺ‫ܨ‬௉ ൅ ‫ܨ‬ே ሻ ൐ Ͳ which means: ‫ܨ‬௣ ൐ ‫ܨ‬ே ൅ ͳͲି଻ 4-31) a) If the drop voltage of Rin is called v1 Then: ሺ‫ݒ‬௜௡ െ ‫ݒ‬ሻ ‫ݒ‬ଵ ݀ െ െ ‫ݒ ܥ‬ଵ ൌ Ͳ ݀‫ݐ‬ ܴ ܴ௜௡ Also:

‫ݒ‬௜௡ െ ‫ݒ‬ଵ ‫ݒ‬௢௨௧ ൅ ൌͲ ܴ௜௡ ܴ௙

Then: ‫ݒ‬ଵ ൌ ‫ݒ‬௜௡ ൅

ܴ௜௡ ‫ݒ‬ ܴ௙ ௢௨௧

Substituting this expression into the above equation gives: ܴ ܴ‫ݒ݀ ܥ‬௢௨௧ ‫ݒ‬௜௡ ݀‫ݒ‬௜௡ ͳ ൅‫ܥ‬ ൅ ൭൬ͳ ൅ ൌͲ ൰ ‫ݒ‬௢௨௧ ൱ ൅ ܴ௜௡ ܴ௙ ݀‫ݐ‬ ܴ௙ ܴ ݀‫ݐ‬ As a result:

440 

 Golnaraghi,Kuo

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

ͳ ͳ ܴ ൬ ൅ ‫ݏܥ‬൰ ‫ݒ‬௜௡ ሺ‫ݏ‬ሻ ൌ  െ ൤൬ͳ ൅ ൰ ൅ ܴ‫ݏܥ‬൨ ‫ݒ‬௢௨௧ ሺ‫ݏ‬ሻ ܴ ܴ௙ ܴ௜௡ Or ܴ௙ ሺܴ௜௡ ‫ ݏܥ‬൅ ͳሻ ‫ݒ‬௢௨௧ ൌെ ‫ݒ‬௜௡ ܴܴ௜௡ ‫ ݏܥ‬൅ ሺܴ௜௡ ൅ ܴሻ b) If the dropped voltage across resistor Rf is called vf, then ‫ݒ‬௜௡ ‫ݒ‬௙ ൅ ൌͲ ‫ۓ‬ ܴ௜௡ ܴ௙ ‫ݒ۔‬௙ െ ‫ݒ‬௢௨௧ ൅ ‫ ݀ ܥ‬൫‫ ݒ‬െ ‫ ݒ‬൯ െ ‫ݒ‬௜௡ ൌ Ͳ ௢௨௧ ݀‫ ݐ‬௙ ܴ ܴ௜௡ ‫ە‬ As a result: ܴ௙ ‫ݒ‬௙ ൌ െ ‫ݒ‬ ܴ௜௡ ௜௡ Substituting into the second equation gives: െ

ܴ௙ ݀‫ݒ‬௜௡ ܴ௙ ‫ݒ‬௢௨௧ ݀ ‫ݒ‬௜௡ ‫ݒ‬௜௡ െ െ‫ܥ‬ െ ‫ݒ ܥ‬௢௨௧ െ ൌͲ ݀‫ݐ‬ ܴܴ௜௡ ܴ ܴ௜௡ ݀‫ݐ‬ ܴ௜௡

or െ൬

ܴ௙ ൅ ܴ ‫ܴܥ‬௙ ݀‫ݒ‬௜௡ ݀‫ݒ‬௢௨௧ ‫ݒ‬௢௨௧ ൅‫ܥ‬ ‫ݒ‬௜௡ ൅ ൰ൌ ܴ ݀‫ݐ‬ ܴ௜௡ ݀‫ݐ‬ ܴܴ௜௡

As a result: ‫ݒ‬௢௨௧ ͳ ܴܴ௙ ‫ ݏܥ‬൅ ܴ௙ ൅ ܴ ൌെ ܴ௜௡ ‫ݒ‬௜௡ ܴ‫ ݏܥ‬൅ ͳ 4-32) The heat flow-in changes with respect to the electric power as: ‫ݍ‬ሶ ௜௡

‫ݒ‬ଶ ൌ‫ܭ‬ ܴ

where R is the resistor of the heater. The heat flow-out can be defined as: ‫ݍ‬ሶ ௢௨௧ ൌ

ܶଵ െ ܶଶ ‫ܭ‬௙

where Kf is the heat flow coefficient between actuator and air, T1 and T2 are temperature of actuator and ambient.

441 

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

Since the temperature changes with the differences in heat flows: ݀ܶଵ ͳ ‫ݒ‬ଶ ͳ ͳ ൌ ሺ‫ݍ‬ሶ ௜௡ െ ‫ݍ‬ሶ ௢௨௧ ሻ ൌ ൭‫ ܭ‬െ ሺܶଵ െ ܶଶ ሻ൱ ‫ܥ‬ ‫ܥ‬ ݀‫ݐ‬ ܴ ‫ܭ‬௙ where C is the thermal capacitor. The displacement of actuator is changing proportionally with the temperature differences: ‫ ݔ‬ൌ ‫ܣ‬ሺܶଵ െ ܶଶ ሻ If we consider the T2 is a constant for using inside a room, then ܶଵ ൌ

‫ݔ‬ ൅ ܶଶ  ‫ܣ‬

Therefore: ݀ܶଵ ͳ ݀‫ݔ‬ ൌ ݀‫ݐ‬ ‫ݐ݀ ܣ‬ ͳ ݀‫ݔ ݔ‬ ‫ ܭ‬ଶ ቆ െ ቇൌ ‫ݒ‬ ‫ܭ ݐ݀ ܣ‬௙ ‫ܶܥ‬ By linearizing the right hand side of the equation around point ‫ ݒ‬ൌ ‫ ݒ‬௢ ͳ ݀‫ݔ ݔ‬ ‫ݒܭ‬௢ ሺʹ‫ݒ‬ଶ െ ͳሻ ቆ െ ቇൌ ‫ܴ ݐ݀ ܣ‬௙ ‫ܴܥ‬ Or ‫ݔ ݔ݀ ܴܥ‬ ቆ െ ቇ ൌ ʹ‫ ݒ‬െ ͳ ‫ݒܣܭ‬௢ ݀‫ܭ ݐ‬௙ If we consider the right hand side of the above equation as two inputs to the system as: ‫ݑ‬ଵ ሺ‫ݐ‬ሻ ൌ ʹ‫ݒ‬ and ‫ݑ‬ଶ ሺ‫ݐ‬ሻ ൌ ͳ or ‫ݑ‬ଶ ሺ‫ݐ‬ሻ ൌ ‫ݑ‬௦ ሺ‫ݐ‬ሻ, then: ቈ

ܺሺ‫ݏ‬ሻ ቉ ܸሺ‫ݏ‬ሻ ௨

ൌ మ ሺ௧ሻୀ଴

ʹ‫ݒܣܭ‬௢ ‫ܴܥ‬ሺ‫ ݏ‬െ ͳሻ

4-33) Due to insulation, there is no heat flow through the walls. The heat flow through the sides is:

442 

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

ʹߨ‫ܭ‬௩ ‫ܪ‬ ‫ݍۓ‬ଵǡଶ ൌ ‫ ݎ‬ሺܶଵ െ ܶଶ ሻሺͳሻ ۖ Ž ቀ ଶ ቁ ‫ݎ‬ଵ ʹߨ‫ܭ‬ ௜‫ܪ‬ ‫ ݍ۔‬ൌ ଶǡ௔ ‫ݎ‬ଷ ሺܶଶ െ ܶ௔ ሻሺʹሻ ۖ Ž ቀ ቁ ‫ە‬ ‫ݎ‬ଶ Where T1 and T2 are the temperature at the surface of each cylinder. As‫ݍ‬ଵǡଶ ൌ ‫ݍ‬ଶǡ௔ , then from equation (1) and (2), we obtain: ܶଶ ൌ

‫ݎ‬ Ž ቀ‫ݎ‬ଷ ቁ ଶ

ʹߨ‫ܭ‬௜ ‫ܪ‬

‫ݍ‬ଵǡଶ ൅  ܶ௔ ሺ͵ሻ

The conduction or convection at: ଶ ‫݈݅݋݄݁ݐ݂݋݂݁ܿܽݎݑݏ݄݁ݐۓ‬ǣ‫ݍ‬௢ ൌ ‫ܥ‬௛ ሺߨ‫ݎ‬ଵ ሻሺܶଵ െ ܶ௔ ሻሺͶሻ ۖ ‫݃݊݅݋݃ݎ݋݂݂݋݂݄݁ܿܽ݁ݐ‬ǣ‫ ݍ‬ൌ ‫ܣ ܥ‬൫ܶ െ ܶ ൯ሺͷሻ ௙ ௛ ௙ ଵ ‫ܭ‬ ‫۔‬ ௩ ሺߨ‫ݎ‬ଵଶ ሻሺܶଵ െ ܶ௔ ሻሺ͸ሻ ۖ‫ݐܽݒ݄݁ݐݐܽ݉݋ݐݐ݋ܾ݄݁ݐ‬ǣ‫ݍ‬௩ ൌ ݄ ‫ە‬

The thermal capacitance dynamics gives:

݀ ܶ ൌ ‫ݍ‬௙ െ ‫ݍ‬ଵǡଶ െ ‫ݍ‬௩ െ ‫ݍ‬௢ ሺ͹ሻ ݀‫ ݐ‬ଵ ݀ ݉‫ܶ ܥ‬௙ ൌ  െ‫ݍ‬௙ ሺͺሻ ݀‫ݐ‬

݉௢ ‫ܥ‬௢

Where ݉௢ ൌ ߨ‫ݎ‬ଵଶ ‫݀ܪ‬଴ According to the equation (7) and (8), T1 and Tf are state variables. Substituting equation (3), (4), (5) and (6) into equation (7) and (8) gives the model of the system. 4-34) As heat transfer from power supply to enclosure by radiation and conduction, then: ‫ܥ‬௣ ‫ݍ‬௥ ൌ

݀ ܶ ൌ ‫ݍ‬௣ െ ‫ݍ‬௥ െ ‫ݍ‬௖ ሺͳሻ ݀‫ ݐ‬௣

ߪ൫ܶ௣ସ െ ܶ௘ସ ൯ ߪ൫ܶ௣ସ െ ܶ௘ସ ൯ ൌ ሺʹሻ ͳ ͳ െ ߝଵ ͳ െ ߝଶ ͳ ൤ ൅ ൅ ൨ ܴ௣ ൅ ‫ ܨ ܣ‬൅ ܴ௘ ‫ܣ‬௣ ‫ܨ‬ ߝଵ ‫ܣ‬௣ ߝଶ ‫ܣ‬௘ ௣ ‫ݍ‬௖ ൌ ൬

ܶ௣ െ ܶ௦ ‫ܭ‬ଵ ‫ܣ‬ଵ ሺ͵ሻ ൰ ൫ܶ௣ െ ܶ௘ ൯ ൌ ߂‫ݔ‬ ܴா

443 

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

Also the enclosure loses heat to the air through its top. So: ‫ܥ‬௘

݀ ܶ ൌ ‫ݍ‬௥ ൅ ‫ݍ‬௖ െ ‫ݍ‬௘ െ ‫ܥ‬௧ ‫ܣ‬௧ ሺܶ௘ െ ܶ௔ ሻሺͶሻ ݀‫ ݐ‬௘

Where ‫ݍ‬௘ ൌ ൬

ܶ௘ െ ܶ௦ ‫ܭ‬ଶ ‫ܣ‬ଶ ሺͷሻ ൰ ሺܶ௘ െ ܶ௦ ሻ ൌ ߂‫ݔ‬ ܴ௦

And Ct is the convective heat transfer coefficient and At is the surface area of the enclosure. The changes if the temperature of heat sink is supposed to be zero, then: ‫ܥ‬

݀ ܶ ൌ ‫ݍ‬௘ െ ‫ݍ‬௦ ൌ Ͳ ݀‫ ݐ‬௦௜௡௞

Therefore ‫ݍ‬௘ ൌ ‫ݍ‬௦ where ‫ݍ‬௦ ൌ ‫ܥ‬௦ ‫ܣ‬௦ ሺܶ௦ െ ܶ௔ ሻ, as a result: ܶ௘ െ ܶ௦ ൌ ‫ܥ‬௦ ‫ܣ‬௦ ሺܶ௦ െ ܶ௔ ሻሺ͸ሻ ܴ௦ According to the equations (1) and (4), Tp and Te are state variables. The state model of the system is given by substituting equations (2), (3), and (6) into these equations give.

4-35) If the temperature of fluid B and A at the entrance and exit are supposed to be ܶ஻ே and ܶ஻௑ , and TAN and TAX, respectively. Then: ൜

‫ݍ‬஻ ൌ ݉ሶ஻ ‫ܥ‬஻ ሺܶ஻௑ െ ܶ஻ே ሻሺͳሻ ‫ݍ‬஺ ൌ ݉ሶ஺ ‫ܥ‬஺ ሺܶ஺௑ െ ܶ஺ே ሻሺʹሻ

The thermal fluid capacitance gives: ݀ ܶ஻௫ ൌ െ‫ݍ‬஻ െ ‫ݍ‬஻ି஺ ሺ͵ሻ ݀ܶ ൞ ݀ ܶ ൌ െ‫ݍ‬஺ ൅ ‫ݍ‬஻ି஺ ሺͶሻ ‫ܥ‬஺ ݀ܶ ஺௫ ‫ܥ‬஻

From thermal conductivity: ‫ݍ‬஻ି஺ ൌ

ܶ஻௫ െ ܶ஺௫ ሺͷሻ ܴ௢ Ž ቀ ቁ ܴ௜ ͳ ͳ ൅ ൅  ‫ܥ‬௜ ‫ܣ‬௜ ʹߨ‫ܥ ܮܭ‬௢ ‫ܣ‬௢

444 

AutomaticConttrolSystems,9thEdition

Chapteer4Solutionss

 Golnarraghi,Kuo

Where Ci and Co arre convectivve heat transffer coefficiennt of the inner and outerr tube; Ai andd Ao are t the surfface of innerr and outer tuube; Ri and Ro are the raadius of inneer and outer tube. Substittuting equations (1), (2), and (5) intoo equations (3) and (4) giives the statee model of thhe system m.

4-336)(a)Blockkdiagram:

 (b)Transferfunction:







W D s

:( s )

K1 K 4 e

D ( s)

Js  JK L  B s  K 2 B  K 3 K 4 e 2

W D s

(c)Characteristicequattion: 



Js  JK L  B s  K 2 B  K 3 K 4 e 2



W D s

0

(d)Transferfunction: 

:( s )









Charaacteristicequaation:





D (s)

#

K1 K 4 2  W D s '( s)

 











' ( s ) # J W D s  2 J  JK 2W D  BW D s  2 JK 2  2 B  W D K 2 B  W D K 3 K 4 s  2 K 2 B  K 3 K 4 3

2

4-337) The tottal potential energy is: ͳ ͳ ܷ ൌ ߤ‫ ݕܣ‬ଶ െ ൬െ ߤ‫ܣ‬ ‫ ݕܣ‬ଶ ൰ ൌ ߤ‫ݕܣ‬ ‫ݕ‬ଶ ʹ ʹ The tottal kinetic en nergy is:

445 

0

AutomaticControlSystems,9thEdition

Chapter4Solutions

ܶൌ

 Golnaraghi,Kuo

‫ ߤܮܣ‬ଶ ‫ݕ‬ሶ ʹ݃

Therefore: ‫ ߤܮܣ‬ଶ ‫ݕ‬ሶ ൌ ߤ‫ ݕܣ‬ଶ ʹ݃ ‫ ܮ‬ଶ ‫ݕ‬ሶ ൌ ‫ ݕ‬ଶ ʹ݃ As a result: ‫ݕ‬ሶ ൌ ඨ

ʹ݃ ‫ݕ‬ ‫ܮ‬

So, the natural frequency of the system is calculated by:

߱ ൌට

Also, by assuming ‫ݕ‬ሺ‫ݐ‬ሻ ൌ ܻ •‹ሺ߱‫ ݐ‬൅ ߠሻ and substituting into

௅ ଶ௬

ଶ௚ ௅

‫ݕ‬ሶ ଶ ൌ ‫ ݕ‬ଶ yields the same result

when calculated for maximum displacement.

4-38) If the height of the reservoir, the surge tank and the storage tank are assumed to be H, h1 and h2, then potential energy of reservoir and storage tank are: ܲ ൌ ߩ݃‫ܪ‬ ൜ ଵ ܲ௧ ൌ ߩ݄݃ଶ For the pipeline we have: ݈ܲ

݀ ܳ ൌ ‫ܣ‬ሺܲଵ െ ܲଶ ሻ ൅ ߩ‫݃ܣ‬ሺ‫ݖ‬ଵ െ ‫ݖ‬ଶ ሻ െ ‫ܨ‬௙ ݀‫ݐ‬

The surge tank dynamics can be written as: ܲ௦ ൌ ߩ݄݃ଵ  ݀ ‫ܣ‬௦ ݄ଵ ൌ ܳଶି௦ ሺܾ݁‫݇݊ܽݐ݁݃ݎݑݏ݀݊ܽʹݐ݊݅݋݌ݐܽ݁݌݅݌݊݁݁ݓݐ‬ሻ ݀‫ݐ‬ At the turbine generator, we have: ൫ܲ௧௚ െ ܲ௧ ൯ܳଶି௩ ൌ ‫ܫ‬ where I is a known input and Q2-v is the fluid flow transfer between point 2 and valve. The behaviour of the valve in this system can be written as: 446 

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo ଵ

ܳଶି௦ ൌ ‫ܥ‬௦ ‫݊݃ݏ‬ሺܲଶ െ ܲ௦ ሻሺȁܲଶ െ ܲ௦ ȁሻఈೞ

ܳଶି௩ ൌ ‫ܥ‬௩ ‫݊݃ݏ‬൫ܲ௩ െ ܲ௧௚ ൯൫หܲ௩ െ ܲ௧௚ ห൯ఈೡ

Regarding Newton's Law: ൜

ܲଶ ൌ ܲ௩ ܳ ൌ ܳଶି௩ ൅ ܳଶି௦

According to above equations, it is concluded that Q and h1 are state variables of the system. The state equations can be rewritten by substituting P2, Pv, Ps and Q2-v from other equations.

4-39)

D

If the beam rotate around small angle of ሺ…'• ߙ ؆ ͳሻ, then ݀ ߱ ൌ ܶ௜௡ െ ‫ ݀݃ܯ‬െ ‫ܮܨ‬ ݀‫ݐ‬ ‫ܧܣ‬ሺ‫ ߙܮ‬െ ‫ݕ‬ሻ ‫۔‬ ‫ܨ‬ൌ ‫ܪ‬െ‫ݕ‬ ‫ە‬ ‫ܬۓ‬

where A and E are cross sectional area and elasticity of the cable; H is the distance between point O and the bottom of well, and y is the displacement. On the other hand, Newton's Law gives: ݉

݀ ‫ ݒ‬ൌ ܲ௕ ‫ܣ‬௪ ൅ ‫ ܨ‬െ ܲ௔ ‫ܣ‬௪ െ ‫ݒܤ‬ଶ െ ݉݃ ݀‫ݐ‬

447 

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

Pa AZ

Bv 2

Pb AZ

where B is the viscous friction coefficient, Aw is the cross sectional area of the well; P1 and P2 are pressures above and below the mass m. The dynamic for the well can be written as two pipes separating by mass m: Pb AZ Ps AZ

Q Q

y Ff

P1 AZ

Pa AZ

b)

a

‫ܨ‬௙ ݀ܳ ‫ܣ‬௪ ‫ܣ‬௪ ݃ ሺܲଵ െ ܲ௕ ሻ ൅ ሺͲ െ ‫ݕ‬ሻ െ ൌ ݀‫ݐ‬ ‫ݕ‬ ߩ‫ݕ‬ ߩ‫ݕ‬ ‫ܨ‬௙ଵ ݀ܳ ݃ ͺ‫ܣ‬ ‫ܣ‬ ௪ ௪ ‫ ۔‬ଵൌ ሺܲ௔ െ ܲ௦ ሻ ൅ ሺͲ െ ‫ݕ‬ሻ െ ‫ݕ‬ ߩሾ‫ ܪ‬െ ‫ ܦ‬െ ‫ݕ‬ሿ ߩ‫ݕ‬ ‫ݐ݀ ە‬ ‫ۓ‬

Where D is the distance between point O and ground, Ps is the pressure at the surface and known. If the diameter of the well is assumed to be r, the Ff for the laminar flow is ‫ܨ‬௙ ൌ ͵ʹ Therefore:

448 

ߤ‫ܳݕ‬ ‫ݎ‬ଶ

AutomaticControlSystems,9thEdition

Chapter4Solutions

݀ܳ ‫ܣ‬௪ ߤܳ ሺܲଵ െ ܲ௕ ሻ െ ‫ܣ‬௪ ݃ െ ͵ʹ ଶ ൌ ݀‫ݐ‬ ߩ‫ݎ‬ ߩ‫ݕ‬ ݀ܳ ‫ܣ‬ ߤܳଵ ௪ ‫ ۔‬ଵൌ ሺܲ௔ െ ܲ௦ ሻ െ ‫ܣ‬௪ ݃ െ ͵ʹ ଶ ߩሾ‫ ܪ‬െ ‫ ܦ‬െ ‫ݕ‬ሿ ߩ‫ݎ‬ ‫ݐ݀ ە‬ ‫ۓ‬

The state variables of the system are , v, y, Q, Q1. 4-40) For the hydraulic amplifier, we have: ܳ ൌ ܰ‫ݕ‬௩ ݀‫ݕ‬௣ ൝ ܳൌ‫ܣ‬  ݀‫ݐ‬ As a result ݀ ܰ ‫ݕ‬௣ ൌ ‫ݕ‬௩ ݀‫ݐ‬ ‫ܣ‬ where N is a constant and A is the cross sectional area. For the walking beam: ‫ݕ‬௩ ൌ For the spring:

݈ଵ ‫ݕ‬ଶ െ ݈ଶ ‫ݕ‬௣ ݈ଵ ൅ ݈ଶ

‫ ܨ‬ൌ ‫ܭ‬ሺ‫ݕ‬ଵ െ ‫ݕ‬ଶ ሻ

The angular velocity of the lever is assumed as: ߱௫ ൌ Ͳ ՜  ߗ௫ ൌ Ͳ ߱ ቐ ௬ ൌ ߱ ՜  ߗ௬ ൌ ߱ ߱௭ ൌ ߙሶ ՜  ߗ௭ ൌ Ͳ The moments of inertia of the lever are calculated as: ‫ܬ‬௫௫ ൌ ݉‫ܮ‬ଶ •‹ଶ ߙ ‫ܬ‬௫௬ ൌ ݉ሺ‫ ߙ •'… ܮ‬൅ ‫ݎ‬ሻሺ‫ߙ ‹• ܮ‬ሻ ‫ܬ‬௬௬ ൌ ݉ሺ‫ ߙ •'… ܮ‬൅ ‫ݎ‬ሻଶ ‫۔‬ ‫ܬ‬௬௭ ൌ ‫ܬ‬௭௫ ൌ Ͳ ۖ ‫ܬە‬௭௭ ൌ ݉ሾሺ‫ ߙ •'… ܮ‬൅ ‫ݎ‬ሻଶ ൅ ‫ܮ‬ଶ •‹ଶ ߙሿ ‫ۓ‬ ۖ

where L is the length of lever and r is the offset from the center of rotation. According to the equation of angular motion:

449 

 Golnaraghi,Kuo

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

ሶ ߱ െ ‫ܬ‬௫௬ ߱ሶ ൅ ‫ܬ‬௭௭ ߱௭ ߱ ܶ௫ ൌ െ‫ܬ‬௫௬ ሶ ߱ ൅ ‫ܬ‬௬௬ ߱ሶ ܶ௬ ൌ ‫ܬ‬௬௬ ൞ ሶ ߱௭ ൅ ‫ܬ‬௭௭ ߱ሶ ௭ ൅ ‫ܬ‬௫௬ ߱ଶ ܶ௭ ൌ ‫ܬ‬௭௭

Also: ܶ௭ ൌ ݂௬ ݀ ൅

‫ܨ‬ ሺ‫ ݎ‬െ ݀ •‹ ߙሻ െ ݉݃ሺ‫ ߙ •'… ܮ‬൅ ‫ݎ‬ሻ ʹ

Due to force balance, we can write: ݂௬ െ

‫ܨ‬ െ ݉݃ ൌ ݉ሺ‫߱ ߙ ‹• ܮ‬ሶ ଶ െ ‫߱ ߙ ‹• ܮ‬ሶ ଶଶ ሻ ʹ

Therefore ߱ሶ ଶ can be calculated form above equations. On the other hand, െ‫ݕ‬ଶ ൌ ‫ߙ ‹• ݎ‬, and

ௗ௬మ ௗ௧

ൌ ‫ݒ‬ଶ and

ௗ ௗ௧

ߙ ൌ ߱ଶ , the dynamic of the system is:

݀ ݊ଵ ܳ ߱ൌ െ ‫ ߱ܤ‬െ ܶ௓ ቐ ݀‫ݐ‬ ߱ ܳ ൌ ݊ଶ ‫ݕ‬ሶ௣ ‫ܬ‬

where B is the viscous friction coefficient, and n1 and n2 are constant. The state variables of the systems are ,yp,  and 2.

450 

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

4-41) If the capacitances of the tanks are assumed to be C1 and C2 respectively, then ݄݀ଵ ‫ܥ ۓ‬ଵ ൌ ሺ‫ݍ‬௜ଵ െ ‫ͳݍ‬ሻ ݀‫ݐ‬ ۖ ۖ ݄݀ଶ ۖ‫ܥ‬ଶ ൌ ሺ‫ݍ‬ଵ ൅ ‫ݍ‬௜ଶ െ ‫ݍ‬௢ ሻ ݀‫ݐ‬ ݄ଵ െ ݄ଶ ‫۔‬ ‫ݍ‬ଵ ൌ ܴଵ ۖ ۖ ݄ଶ ۖ ‫ݍ‬௢ ൌ ‫ە‬ ܴଶ Therefore: ݄݀ଵ ͳ ݄ଵ െ ݄ଶ ൌ ൬‫ݍ‬௜ଵ െ ൰ ‫ܥ‬ଵ ݀‫ݐ‬ ܴଵ ‫݄݀۔‬ଶ ൌ ͳ ൬݄ଵ െ ݄ଶ ൅ ‫ ݍ‬െ ݄ଶ ൰ ௜ଶ ‫ݐ݀ ە‬ ‫ܥ‬ଶ ܴଵ ܴଶ ‫ۓ‬

Asa result: ͳ ݄݀ଵ ‫ۍ‬െ ܴଵ ‫ܥ‬ଵ ൦ ݀‫ ݐ‬൪ ൌ ‫ێ‬ ݄݀ଶ ‫ͳ ێ‬ ‫ܴ ۏ‬ଵ ‫ܥ‬ଶ ݀‫ݐ‬

ͳ ͳ ‫ې‬ ‫ۍ‬ ܴଵ ‫ܥ‬ଵ ‫݄ ۑ‬ଵ ‫ܥ‬ ൤ ൨ ൅  ‫ ێ‬ଵ ܴଵ ൅ ܴଶ ‫݄ ۑ‬ଶ ‫Ͳێ‬ െ ‫ۏ‬ ܴଵ ܴଶ ‫ܥ‬ଶ ‫ے‬

4-42) The equation of motion is: ‫ݔܯ‬ሷ ൅ ‫ܤ‬ሺ‫ݔ‬ሶ െ ‫ݕ‬ሶ ሻ ൅ ‫ܭ‬ሺ‫ ݔ‬െ ‫ݕ‬ሻ ൌ Ͳ Considering ‫ ݖ‬ൌ ‫ ݔ‬െ ‫ ݕ‬gives: ‫ܯ‬ሺ‫ݖ‬ሶ െ ‫ݕ‬ሷ ሻ ൅ ‫ݖܤ‬ሶ ൅ ‫ ݖܭ‬ൌ Ͳ or ‫ݖ‬ሷ ൅

‫ܭ‬ ‫ܤ‬ ‫ݖ‬ሶ ൅ ‫ ݖ‬ൌ  ‫ݕ‬ሷ ‫ܯ‬ ‫ܯ‬

4-43)(a)Blockdiagram: 

451 

Ͳ‫ې‬ ‫ݍ‬ ‫ ۑ‬ቂ ௜ଵ ቃ ‫ݍ‬ ͳ ‫ ۑ‬௜ଶ ‫ܥ‬ଶ ‫ے‬

AutomaticConttrolSystems,9thEdition

Chapteer4Solutionss

 Golnarraghi,Kuo

  (b)Transfferfunction: 



TAO ( s )



Tr ( s )

KM KR

3.51

1  W s 1  W s  K s

c

m

KR

20 s  122 s  4.51 2



4-444) Sysstemequations: d Tm 2

Tm (t )



Jm

dt

2

 Bm

dT m

ET L

uation: eo Outputequ 

Statediiagram:



Transferr

dt

20S

 K T m  T L

d TL 2

K T m  T L

JL

dt

2

 Bp

dT L



d dt



fun nction: 

  4L (s) Tm ( s ) Eo ( s ) Tm ( s )

K s ª¬ J m J L s  Bm J L  B p J m s  J m K  J L K  Bm B p s  Bm K º¼ 3

2

KE / 20S

s ª¬ J m J L s  Bm J L  B p J m s  J m K  J L K  Bm B p s  Bm K º¼ 3

2



4-445)(a)Statteequations: 



dT L dt

ZL

dZ L

K2

dtt

JL

Tm 

K2 JL

TL

dT t dt

Zt

452 

dZ t

K1

dtt

Jt

Tm 

K1 Jt

Tt

AutomaticConttrolSystems,9thEdition





dT m

dZ m

Zm

dt

dtt



Bm Jm

Chapteer4Solutionss

Zm 

K

1

 K2 Jm

Tm 

K1 Jm

Tt 

K2 Jm

TL 

 Golnarraghi,Kuo

1 Jm

Tm 

(b)Stateddiagram:





  (c)Transfferfunctions:









4 L (s)

K 2 J t s  K1

Tm ( s )

'(s)

2

'( s)



4t ( s)

K1 J L s  K 2

Tm ( s )

'(s)

2

4m (s)

J t J L s  K1 J L  K 2 J t s  K1 K 2

Tm ( s )

'(s)

4

2

s[ J m J L s  Bm J L J t s  K1 J L J t  K 2 J L J t  K1 J m J L  K 2 J m J t s 5

4

 Bm J L K1  K 2 s  K1 K 2 J L  J t  J m s  Bm K1 K 2 ] 2

(d)Charaacteristicequattion:

' s) '(

3



0

0 .

4-446) (a)Transfferfunction: 







G(s)

Ec ( s )

1  R2 Cs

E (s)

1  R1  R2 Cs



(b)Blockdiagram:



453 



AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

(c)Forwardpathtransferfunction: 





K 1  R2 Cs

:m (s)



>1  R

E (s)

1

 R2 Cs @ K b K i  Ra J L s



(d)Closedlooptransferfunction: 



:m (s)



Fr ( s )





(e)

Gc ( s )



K I K 1  R2 Cs

>1  R

 R2 Cs @ K b K i  Ra J L s  K I KK e N 1  R2 Cs

1

Ec ( s )

1  R Cs

E (s)

R1Cs

2





 Forwardpathtransferfunction:







:m (s)



E (s)



Closedlooptransferfunction:







Fr ( s )

R1Cs K b K i  Ra J L s  K I KK e N 1  R2 Cs

(f) f r

120 pulses / sec





K I K 1  R2 Cs

36 pulses / rev

NK eZ m

R1Cs K b K i  Ra J L s

:m (s)

Ke

fZ

K 1  R2 Cs

36 / 2S pulses / rad

Zm

120 pulses / sec



5.73 pulses / rad.

200 RPM

200(2S / 60 ) rad / sec



N ( 36 / 2S ) 200(2S / 60 ) 120 N pulses / sec

Thus,N=1.ForZ m 1800 RPM, 120 N ( 36 / 2S )1800(2S / 60) 1080 N . Thus, N 9.

4-47) If the incremental encoder provides a pulse at every edge transition in the two signals of channels A and B, then the output frequency is increased to four times of input frequency. 4-48)(a) 1 §





:m (s) TL ( s )



K H (s) ·  K1 § H i (s) · 1  K1 H e ( s )  1 i H e (s)  ¨ ¸ ¨ ¸ B  Js © Ra  La s ¹ B  Js © Ra  La s ¹ # 0 Zr 0

'( s)

'(s)

Thus,

454 

AutomaticControlSystems,9thEdition







H e (s)



Chapter4Solutions

H i (s)

H i (s)

Ra  La s

H e (s)

 Golnaraghi,Kuo

 Ra  La s 

K1 K i (b)



'(s)



a

:r (s)

1  K1 H e ( s ) 

a



K1 K b

R

 La s B  Js

:m (s)



dt

R

a

TL 0

d Tm

Ra La

2





2

dt

d To 2

dt

ia 

1 La

Bm dT m J m dt

KL

2

JL

T

2

e

Te



Stateequations:

dt



1 J

R

a

dt nK L Jm

Tm 

nK L Jm

nT

m

e

a

 La s ( B  Js



#

1



Kb H e (s)

K sT e

ea

Ke 

Tm

T2

nT m 

K i ia

 To

T2



KL JL

2

x1 

n KL Jm

x3 

x1  Bm Jm

Z o , x3

nK L JL x4 

T m , x4

n

Z m , x5

dx3

x3

ia 

x4

dt



Ki Jm

x5

dx5 dt

(b)Statediagram:

455 

R

 La s B  Js

T r To Tm

T o , x2

dx 2

x2



dx 4

Ra  La s

K1 K i K b H e ( s )

 To





 eb

a

Statevariables: x1

dt



 La s B  Js  K i K b  K1 K i K b H e ( s )



dx1

K1 H i ( s )

K1 K i

:r ( s)

dia





K1 K i



 La s B  Js

4-49)(a)Causeandeffectequations:



'( s)

K1 K b

R

 La s B  Js

TL 0

a

 1



R

:m ( s)





KK s La

x1 

Kb La

x4 

Ra La

x5 

KK s La

Tr

AutomaticConttrolSystems,9thEdition

Chapteer4Solutionss

 Golnarraghi,Kuo

  

(c)Forw wardpathtran nsferfunction: 4o ( s)



 4 e ( s )

KK s K i nK L

n R K J

3

2

L

a



L

2

2

 Ra K L J m  Bm K L La s  K i K b K L  Ra Bm K L º¼

Clossedlooptranssferfunction: 4o ( s)



s ª¬ J m J L La s  J L Ra J m  Bm J m  Bm La s  n K L La J L  K L J m La  Bm Ra J L s   4

 4 r ( s )

KK s K i nK L 4

n R K J 2

a



(d) K L





J m J L La s  J L Ra J m  Bm J m  Bm La s  n K L La J L  K L J m La  Bm Ra J L s   5

f, T o

T2

L

L

2

3

 Ra K L J m  Bm K L La s  K i K b K L  Ra Bm K L s  nKK s K i K L 2

nT m . J L is reflected to motor side so J T

2

J m  n J L .

 Staateequations:: 



dZ m dtt





Bm JT

Zm 

Ki JT

ia

dT m dt

Zm

dia dt

Statediagram:

456 



Ra La

ia 

KK s La

Tr 

KK s La

nT m 

Kb La

Zm

AutomaticConttrolSystems,9thEdition

Chapteer4Solutionss

 Golnarraghi,Kuo

  

Forrwardpathtraansferfunction n:







Closedlooptranssferfunction:









4o ( s )

KK s K i n

4e ( s)

s ª¬ J T La s  Ra J T  Bm La s  Ra Bm  K i K b º¼ 2

4o ( s)

KK s K i n

4r (s)

J T La s  Ra J T  Bm La s  Ra Bm  K i K b s  KK s K i n 3



f, all the terms withoutt K L in 4 o ( s ) / 4 e ( s ) and 4 o ( s ) / 4 r ( s ) cann be neglectedd.

 Frompaart(c),when K L 

2

Thesam meresultsasab boveareobtained.

4-550)(a)Systemequations: f



K i ia

MT

dv dt

 BT v

ea

Ra ia  La  Las

dia dt

 Las

dis dt

 eb

0

Rs is  Ls  Las

dis dt

 Las

dia



dt

othsidesoftheelastthreeequ uations,withzeroinitialcond ditions,wehavve (b)TaketheLaplacetraansformonbo





Ki I a ( s) 0



s  BT V ( s )

>R  L

Ea ( s )

a

a



Ki M T s  BT

Y (s)

I a (s)

1 Ra  La  Las s

>E

a

V (s)

Ki

s

s M T s  BT

( s )  Las sI s ( s )  K bV ( s ) @

 Blockd diagram:

457 

 Las s @ I a ( s )  Las sI s ( s )  K bV ( s )



Rearrrangingtheseequations,weeget

I a (s)



T

 Las sI a ( s )  > Rs  s Ls  Las @ I s ( s )

V (s)



M

I a (s)

I s (s)

 Las s Ra  La  Las s

I a (s)

AutomaticConttrolSystems,9thEdition

Chapteer4Solutionss

 Golnarraghi,Kuo

  

(c)Trannsferfunction:: K i > Rs  Ls  Las s @

Y (s)

s > Ra  La  Las s @ > Rs  Ls  Las s @ M T s  BT  K i K b > Rs  La  Las s @  Las s 2

Ea ( s )

2

M

T

s  BT

4-551) (a)Causeeandeffecteqquations:



Te

Tr TL

Tm

K i ia

e



dZ m dt d

Kb







Statteequations:



dT L dt





ZL

K sT e 1 Jm

Ks Tm 

Bm Jm

15.5 V / KRPM

dZ L

KL

dt

JL

Tm 

KL JL

TL

Z

ea

1 V/rrad KL Jm

T

m

TL

15.5

dZ m

Zm

dt

ea  eb

ia

dZ L

KL

dt

JL

T

Ra m

TL

eb

K bZ m

0.148 V / rad / sec 

1000 u 2S / 60

dT m

Ke

dt



Bm Jm

Zm 

KL Jm

TL 

1 Ki J m Ra

KK T s

e

 K bZ m 

(b)Stattediagram:





(c)Forw wardpathtran nsferfunction:



 G(ss )

K i KK Ks KL s ª¬ J m J L Ra s  Bm Ra  K i K b J L s  Ra K L J L  J m s  K L Bm Ra  K i K b º¼ 3

2

458 





AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

 0.03 u 115 . u 0.05

J m Ra J L

10 u 115 . u 0.05

Bm Ra J L

0.001725

115 . u 50000 u 0.05



Ra K L J L



K L Bm Ra  K i K b







(d)Closedlooptransferfunction:

115 . u 50000 u 0.03 1725

Ra K L J m

2875

50000(10 u 1.15  21 u 0.148)

21 u 0.148 u 0.05

Ki Kb J L

0.575

0.1554 

21 u 1 u 50000 K

Ki KK s K L

1050000 K 

730400 

608.7 u 10 K 6

G(s)



 M ( s )

s s  423.42 s  2.6667 u 10 s  4.2342 u 10 3

2

6

8



4L (s)

G(s)

K i KK s K L

4r ( s)

1  G(s)

J m J L Ra s  Bm Ra  K i K b J L s  Ra K L J L  J m s  K L Bm Ra  K i K b s  K i KK s K L 4

3

2

8

M ( s)

6.087 u 10 K







Characteristicequationroots:





4

3

6 2

8

8

s  423.42 s  2.6667 u 10 s  4.2342 u 10 s  6.087 u 10 K

K

K



K

1

s

1.45

s

r j1000

s

405 r j1223.4

s

159.88

s

2117 . r j1273.5

s

617.22 r j1275

s

13105 . r j1614.6

2738

5476



4-52)(a)Nonlineardifferentialequations: 



dx ( t )



dv ( t )

v(t )

dt



With Ra

0 ,I ( t )

dt e( t )

K f i f (t )

Kb v ( t )

 k ( v )  g ( x )  f (t )

 Bv ( t )  f ( t ) 

K f i f (t )

Then, ia ( t )

2



KiI ( t )ia ( t )

 f ( t )

Ki e ( t ) 2 Kb K f

.

2

K f ia ( t )

dv ( t )

Thus,

v (t )

dt

 Bv ( t ) 

Ki 2 Kb K f

(b)Stateequations: ia ( t ) asinput. 







dx ( t )

v (t )

dt

dv ( t ) dt

(c)Stateequations:I ( t ) asinput.

459 

2

 Bv ( t )  Ki K f ia ( t ) 

e( t 0 Kb K f v ( t ) 2

2

v (t )

e (t ) 





AutomaticConttrolSystems,9thEdition

2

f (t )







Chapteer4Solutionss

K i K f ia ( t )

ia ( t )

dx ( t )

dv ( t )

v (t )

dt

dt

I (t )

i f (t )

  Bv ( t ) 

 Golnarraghi,Kuo

Kf Ki Kf

 2

I (t )

4-553)(a)Diffeerentialequations: d Tm 2













K i ia

Jm

dt

2

 Bm

dT m dt

§ dT m  dT L d dt © dt

 K T m  T L  B ¨

2 § dT m  dT L · § J d T L  B dT L ¸ ¨ L 2 L dt ¹ © dt dt © dt

K T m  T L  B ¨

· ¸ ¹

· ¸  TL  ¹

(b)TaketheLaplacetraansformoftheedifferentialeq quationswithzeroinitialcon nditions,wegeet









Ki I a ( s)

Bs  K 4



 4 L (s)



m

s  Bm s  Bs  K 4 m ( s )  Bs  K 4 L ( s ) 2

m

( s )  Bs  K 4 L ( s )

J s L

2

s  BL s4 L ( s )  TL ( s)



a 4 L ( s ) fromthelasttwo oequations,weehave Solvingfor 4 m ( s ) and 4m (s)



J

Ki J m s  Bm  B s  K 2

Bss  K J L s  BL  B s  K 2

I a (s)  4m (s) 

Bs  K J m s  Bm  B s  K 2

4 L (s)



TL ( s ) J L s  BL  B s  K 2

Signaalflowgraph:

  

460 

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

 

(c)Transfermatrix: ª K i ª¬ J L s 2  BL  B s  K º¼ « 'o (s) ¬ K i Bs  K

ª4m (s) º « 4 (s) » ¬ L ¼







 ' o ( s )

1

º ª I a (s) º »« » J m s  Bm  B s  K ¼ ¬ TL ( s ) ¼ Bs  K

2

J L J m s  > J L Bm  B  J m BL  B @ s  > BL Bm  BL  BM B  J m  J L K @ s  K BL  B s  3

3

2

4-54) As ݁ ି்೏ ௦  can be estimated by: ݁

ି்೏ ௦

ܶௗ ‫ݏ‬ ቁ ʹ ؆ ʹ െ ܶௗ ‫ݏ‬ ؆ ܶ ‫ݏ‬ ͳ ൅ ቀ ௗ ቁ ʹ ൅ ܶௗ ‫ݏ‬ ʹ ͳെቀ

Therefore: ‫ܩ‬ሺ‫ݏ‬ሻ ൌ

‫ܭ‬ሺʹ െ ܶௗ ‫ݏ‬ሻ ሺʹ ൅ ܶௗ ‫ݏ‬ሻሺ߬ଵ ‫ ݏ‬൅ ͳሻሺ߬ଶ ‫ ݏ‬൅ ͳሻ

As a result: Poles: െ zeros:

ଵ ఛభ

ǡെ

ଵ ఛమ

ǡെ

ଶ ்೏

்೏

4-55) By approximating݁ ି௦் : ݁

ି்௦

ܶ‫ݏ‬ ʹ ൌ ܶ‫ݏ‬ ͳ൅ ʹ ͳെ

a) ‫ܩ‬ሺ‫ݏ‬ሻ ൌ

ͳെ

‫ݏܮ‬ ʹ

ሺܶ‫ ݏ‬൅ ͳሻ ቀͳ ൅

‫ݏܮ‬ ቁ ʹ

Therefore: ‫ܩ‬ሺ݆߱ሻ ൌ

ͳെ

ሺ݆ܶ߱ ൅ ͳሻ ቀͳ ൅

461 

݆‫߱ܮ‬ ʹ

݆߱‫ܮ‬ ቁ ʹ

AutomaticControlSystems,9thEdition

Chapter4Solutions

b) ‫ݏ‬ ͳെ‫ݏ‬ ʹ ʹ ൅ ʹ‫ݏ‬ ‫ ݏ‬൅ Ͷͳ ൅ ‫ݏ‬ ͳ൅ ʹ ‫ܩ‬ሺ‫ݏ‬ሻ ൌ ଶ ‫ ݏ‬൅ ͵‫ ݏ‬൅ ʹ ʹሺʹ ൅ ‫ݏ‬ሻሺͳ ൅ ‫ݏ‬ሻ ൅ ‫ݏ‬ሺʹ െ ‫ݏ‬ሻሺͳ ൅ ‫ݏ‬ሻ ൅ Ͷሺͳ െ ‫ݏ‬ሻሺʹ ൅ ‫ݏ‬ሻ ൌ ሺ‫ ݏ‬൅ ʹሻଶ ሺ‫ ݏ‬൅ ͳሻଶ െ‫ ݏ‬ଷ െ ‫ ݏ‬ଶ ൅ Ͷ‫ ݏ‬൅ Ͷ ൌ ሺ‫ ݏ‬൅ ʹሻଶ ሺ‫ ݏ‬൅ ͳሻଶ ͳെ

4-56) MATLAB clearall L=1 T=0.1 G1=tf([1/21],conv([0.11],[1/21])) figure(1) step(G1) G2=tf([1144],conv(conv([12],[12]),conv([11],[11]))) figure(2) step(G2)  L= 1  T= 0.1000  Transferfunction: 0.5s+1  0.05s^2+0.6s+1  Transferfunction: s^3s^2+4s+4  s^4+6s^3+13s^2+12s+4

462 

 Golnaraghi,Kuo

AutomaticControlSystems,9thEdition

Chapter4Solutions

ª 4-57) 423(a)Differentialequations: « L ( y ) ¬



 e ( t )

Ri ( t ) 

d L ( y )i ( t ) dt

Ri ( t )  i ( t )

y »¼

 My ( t )

Mg 

Ki ( t ) 2

y (t )



dL( y ) dy ( t ) dy

2



At equilibrium,

dt

di ( t )



0,

dt

L di ( t ) y dt

dy ( t ) dt

463 

 Golnaraghi,Kuo

Ri ( t ) 

L y

2

i(t )

dt

2

0,

d y(t ) dt

2

dy ( t )

0



L di ( t ) y dt



AutomaticControlSystems,9thEdition



Thus, ieq

Eeq

dy eq

R

dt

Chapter4Solutions

yeq

0

(b)Definethestatevariablesas x1







Eeq

x1eq

Then,

i, x 2

K

R

Mg dy

y, and x3

x 2eq

R

Eeq

Eeq

K

R

Mg

 Golnaraghi,Kuo



.

dt x3eq

0

Thedifferentialequationsarewritteninstateequationform:



dx1



dt

R L

x1 x 2 

x1 x3 x2



x2

e

dx 2

f1

L

x3

dt

2

dx3

f2

K x1

g

dt

f3

2

M x2

 

(c)Linearization: 













wf1



wx1

R L

x 2eq 

x3eq



x 2eq

wf1

x 2 eq

1

K Eeq

wf 2

we

L

L

Mg R

wx1



wf 3



wx1

2 K x1eq M



2 x 2 eq

2 Rg Eeq

Eeq

wf1

K

wx 2

L

Mg

0

wf 2

2

wf 3

2 K x1eq

wx 2

3 x 2eq

R L

wf 2

0

wx 2

M



wx 3

x1 x3

x1eq 

2 x2



wf 2

1

Mg

wf 3

Eeq

K

we

L





A

Mg º

» K » 0 » » » 0 » ¼

0 0 2 Rg

Mg

Eeq

K

B

(a)Differentialequations: 2





M1

d y1 ( t ) dt

2

M1 g  B

dy1 ( t ) dt

2



Ki ( t ) 2 y1 ( t )

464 

2

 Ki ( t )

x1eq

Mg

wx 3

x 2eq

K

1 y 2 ( t )  y1 ( t )

2



A 'x  B 'e 

ª Eeq K º « » « RL Mg » « » 0 » « 0 « » « » ¬ ¼

4-58)



wf1

0

Thelinearizedstateequationsabouttheequilibriumpointarewrittenas: 'x

ª Eeq K « « L Mg « 0 « 2 Rg « «  E eq ¬

0

0

we

2 Rg

Eeq





AutomaticControlSystems,9thEdition

Chapter4Solutions

2







M2



d y2 (t ) dt

2

Definethestatevariablesas x1



Thestateequationsare:





dx1

x2

dt



dx2

M1

dt

Atequilibrium,

dx1

dx 2

0,

dt 





2

2

X1

SolvingforI,with X 1





dt

Ki

x

3

dx3

0,

KI

X

3

y 2 ( t )  y1 ( t )

, x3

dx3

 x1

2

M2g 

0

2

Y2

X3

§ M  M2 · 1 ¨ 1 ¸ © M2 ¹





(b)Nonlinearstateequations: dx1 dt

dx2

x2

dt







(c)Linearization: w f1















w x1

B

w x1

M 1 x1

w f2

2 KI

2

3



K

2 KI

2

3

w x1

M 2 X 3  X1

w f4

2 3

w x2

Linearizedstateequations: M1

dx3

 X1

3

 x1



2

0.

0 

2



w f1

0

M1

w x3

M1 X 3  X1

w f3

w x1

w x2

w f4

2 KI

w x3

M 2 X 3  X1

1, g

w f4

2

32.2, B

3

0.1, K

w x4 1.

2

M 2 x3  x1

2





0

w x4

3

w f3

0

w x3

Ki



w f2

2

w f3

0

M2

x4 

0

wi 2 KI

0

B

g

dt

w f2

w f3

2, M 2

dx4

B

465 

x

2

2

x4

dt

w x4

w x2

0

2

w f1

0

w f2

2

2

M 1 x3  x1

w x3

§ 1 · 1 ¨ 2 2 ¸ M1 © X1 X 3  X1 ¹ 2 KI

dt

Ki

1/ 2

Ki

i 

w f1

M1 ( X 3  X1 )

w f4

M 2 g  Bx4 

§ M1  M 2 g ·  ¨ ¸ K © ¹

I

2

M 1 x1

0

w x2

2 KI

x2 

M1

w f1

0

w f2

wi

g

3

dx4

M2

0 and x 4 eq

KI

X

.

dt

1,wehave





dy 2

0. Thus, x 2eq

dt

2

 X1



x4

dt

1/ 2



2

y2 , x4

2

dx 4

0,

dt

2

KI

dy1

2

x1

dt

M1g 



Ki

Ki ( t )



dt

y1 , x 2

M 1 g  Bx2 

2

dy 2 ( t )

2

M2 g  B

 Golnaraghi,Kuo

w x4 

w f3

1

wi

0

B

w f4

2 KI

M2

wi

M 2 X 3  X1

2



AutomaticControlSystems,9thEdition

Chapter4Solutions

1/ 2









§ 32.2(1  2) · X ¨ ¸ 1 1 © ¹

 I

1 

 X 3

 A



1  2 X1

96.6 X 1

2.732 X 1

Y2

0 ª « 2 · 1 « 2 KI §¨ 1  3 ¸ 3 « M1 © X1 X 3  X1 ¹ « 0 « 2 « 2 KI « 3 M 2 X 3  X1 «¬

B

9.8285 X 1

0 ª º « » ·» 1 « 2 KI §¨ 1  « M 1 © X 12 X 3  X 1 2 ¹¸ » « » 0 « » « » 2 KI « » 2 M 2 X 3  X1 «¬ »¼

X1 X 3  X1

2.732

0

B

2 KI

M1

M1 X 3  X1

0

0 2 KI

1

1

9.8285 1.732 

0 º

1

0

 Golnaraghi,Kuo

»

2 3

2

M 2 X 3  X1

3

0 »

» » 1 » B » » M 2 »¼

1 0 0 º ª 0 « 115.2 0.05 18.59 0 » « » 0 0 1 » « 0 « » 0 37.18 0.1¼ ¬ 37.18

ª 0 º « 6.552 » « » « 0 » « » ¬ 6.552 ¼

4-59) a)

Z

F3

T

F1

b)

F2

The equation of the translational motion is:

466 

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

‫ݒ݀ܯ‬ ‫ۓ‬ ൌ ‫ ݃ܯ‬െ ‫ܨ‬ଵ ൅ ‫ܨ‬ଶ െ ‫ܨ‬ଷ ሺͳሻ ۖ ݀‫ݐ‬ ‫ܨ‬ଵ ൌ ‫ݕܭ‬ ݀‫ݕ‬ ‫۔‬ ൌ‫ݒ‬ ۖ ݀‫ݐ‬ ‫ە‬ ‫ܨ‬ଶ ൌ െ‫ݒܤ‬ The equation of rotational motion is: ݀ ߱ ൌ ‫ܨ‬ଷ ‫ݎ‬ ‫ܬ‬ ൞ ݀‫ݐ‬ ݀ߠ ൌ߱ ݀‫ݐ‬ ଵ

where ‫ ܬ‬ൌ ݉‫ ݎ‬ଶ ଶ

Also, the relation between rotational and translational motion defines: ‫ ݒ‬ൌ ‫߱ݎ‬ ቄ ‫ ݕ‬ൌ ‫ߠݎ‬ Therefore, substituting above expression into the first equation gives: ‫ܨ‬ଷ ൌ ቀ

݉ ቁ ሺ‫ ݃ܯ‬െ ‫ ݕܭ‬െ ‫ݒܤ‬ሻ ʹ‫ ܯ‬൅ ݉

The resulted state space equations are: ݀ ʹ ‫ ݃ܯ‬െ ‫ ߠݎܭ‬െ ‫߱ݎܤ‬ ‫ ߱ ۓ‬ൌ ൬ ൰൬ ൰ ݀‫ݐ‬ ʹߤ ൅ ݉ ‫ݎ‬ ݀ ‫۔‬ ߠൌ߱ ‫ە‬ ݀‫ݐ‬ c) According to generalized elements: 1) Viscous friction can be replaced by a resistor where R = B 2) Spring can be replaced by a capacitor where ‫ ܥ‬ൌ

ଵ ௞

3) Mass M and m can be replaced by two inductors where ‫ܮ‬ଵ ൌ ‫ܯ‬and ‫ܮ‬ଶ ൌ ݉. Then the angular velocity is measured as a voltage of the inductor L2 4) The gear will be replaced by a transformer with the ratio of ܰ ൌ 5) The term Mg is also replaced by an input voltage of ܸ௘ ൌ ‫݃ܯ‬

467 

ଵ ௥

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

4-60) As the base is not moving then the model can be reduced to:

Therefore: 1) As ݉

ௗ௩ ௗ௧

ൌ ‫ܨ‬, they can be replaced by a inductor with L = m

2) Friction B can be replaced by a resistor where R = B 3) Spring can be replaced by a capacitor where ‫ ܥ‬ൌ

ଵ ௞

4) The force F is replaced by a current source where Is = F

4-61)

V2

ܴ ൌ ݂ோ ሺܳሻ ൌ ‫ ܥ‬ሺȁܲ െ ܲଶ ȁሻቀఈቁ ൌ

 ɏ‰

ܸ ൌ ߩ݄݃

468 

AutomaticControlSystems,9thEdition

Chapter4Solutions

4-62) Recall Eq. (4-324) Z (s) Y( s )

1 s  2]Z n s  Z n 2 2

Z 1, Set Y( s ) impulse , pick n for simplicity. 9 1 clear all G=tf([-1],[1 2 1]) figure(1) impulse(G) Transfer function: -1 ------------s^2 + 2 s + 1

469 

 Golnaraghi,Kuo

AutomaticControlSystems,9thEdition

Chapter4Solutions

 Golnaraghi,Kuo

4-63) Use Eq. (4-329).

Z (s)



Kmr Ra

§ La · 2 K m Kb s ¨ s  1¸ ( Js  Bs  K )  Ra © Ra ¹ § La · ¨ s  1¸ r © Ra ¹

§ La · 2 K m Kb s ¨ s  1¸ ( Js  Bs  K )  Ra © Ra ¹

For

Va ( s )

mrY( s )

La =0 (very small) the format of the equation is similar to Eq. (4-324), and we expect the same Ra

response for the disturbance input. Except, Z ( s )

Kmr Ra K K ( Js  Bs  K )  m b s Ra 2

effects of disturbance. See Chapter 6.

470 

Va ( s ) can be used to reduce the

AutomaticControlSystems,9thEdition

Chapter5Solutions

Golnaraghi,Kuo

Chapter 5 51(a)] t 0.707 Z n t 2 rad / sec 







(b) 0 d ] d 0.707 Z n d 2 rad / sec 





 (c)] d 0.5 1 d Z n d 5 rad / sec 







(d) 0.5 d ] d 0.707 Z n d 0.5 rad / sec 

  52(a)Type0 (b)Type0(c)Type1(d)Type2(e)Type3(f)Type3 (g)

type 2

53(a) K p

lim G ( s )

lim G ( s )

(h)

type 1

1000 



Kv

lim sG ( s )

0



Ka

lim s G ( s )

2

0

f



Kv

lim sG ( s ) 1



Ka

lim s G ( s )

2

0



 so 0

so 0

so 0

 (b) K p

so 0

so 0

51 

so 0

AutomaticControlSystems,9thEdition

Chapter5Solutions

Golnaraghi,Kuo

 2

lim G ( s )

f



Kv

lim sG ( s )

K



Ka

lim s G ( s )

lim G ( s )

f



Kv

lim sG ( s )

f



Ka

lim s G ( s ) 1

(e) K p

lim G ( s )

f



Kv

lim sG ( s ) 1



Ka

lim s G ( s )

2

0

(f) K p

lim G ( s )

f



Kv

lim sG ( s )



Ka

lim s G ( s )

2

K



ErrorConstants

(c) K p

so 0

so 0

so 0

0

 (d) K p

so 0

so 0

2

so 0

 so 0

so 0

so 0

so 0

f

so 0

so 0

 54(a)Input 

SteadystateError





________________________________________________________________________________





 u s ( t )  



 K p

1000  



1 1001





 tu s ( t )  



 K v

0







 f





t us (t ) / 2 



 K a

0







 f

Input 



ErrorConstants

2

 (b)

SteadystateError



________________________________________________________________________________





 u s ( t )  



 K p

f











 tu s ( t )  



 K v

1





1





t us (t ) / 2 



 K a

0









SteadystateError

2

0

 f

 (c)Input 



ErrorConstants



________________________________________________________________________________





 u s ( t )  



 K p

f 

52 





0

AutomaticControlSystems,9thEdition

Chapter5Solutions

Golnaraghi,Kuo





 tu s ( t )  





t us (t ) / 2 





TheaboveresultsarevalidifthevalueofKcorrespondstoastableclosedloopsystem.

2



 K v

K 





1/ K 



 K a

0 





 f

 (d)Theclosedloopsystemisunstable.Itismeaninglesstoconductasteadystateerroranalysis.  (e)

Input 



ErrorConstants



SteadystateError



________________________________________________________________________________





 u s ( t )  





Kp

f 





0





 tu s ( t )  





Kv

1 





1





t us (t ) / 2 



Ka

0 





 f

Input 





SteadystateError

2



 (f)

ErrorConstants



________________________________________________________________________________





 u s ( t )  





Kp

f



0





 tu s ( t )  





 K v

f





0





t us (t ) / 2 





 K a

K





1/ K 





TheclosedloopsystemisstableforallpositivevaluesofK.Thustheaboveresultsarevalid.

2



55(a) K H

H ( 0 ) 1 









UnitstepInput:











s 1

G( s)

M ( s)

1 G( s) H ( s)

a0

3, a1

ess

§ b0 K H · ¨1  a ¸ KH © ¹ 0 1

3, a2

3

2, b0

2



3

53 

2

s  2 s  3s  3 1, b1

 

1.

AutomaticControlSystems,9thEdition 

Unitrampinput:













Chapter5Solutions

a0  b0 K H

3  1 2 z 0. Thus e ss

a0  b0 K H

2 z 0 and a1  b1 K H

Golnaraghi,Kuo

f. 

UnitparabolicInput: 







1 z 0. Thus e ss

f.

 (b) K H

H ( 0)



5

G( s)







UnitstepInput:







UnitrampInput:









i









e ss



M ( s)





UnitparabolicInput:









1

1 G( s) H ( s)

ess

e ss



2

s  5s  5

a0

5, a1

5, b0

1, b1

0. 

§ b0 K H · 1 § 5 · ¨1  a ¸ 5 ¨1  5 ¸ 0  KH © © ¹ ¹ 0 1

0: a0  b0 K H

i

0

a1  b1 K H

5

1

a0 K H

25

5

1: a1  b1 K H

5 z 0



f

 (c) K H

H ( 0 ) 1 / 5







 M ( s )











UnitstepInput:







UnitrampInput:





s5

G( s) 1 G( s) H ( s) a0

ess

1, a1

4

3

1, a2

50, a3

Thesystemisstable.

15, b0

§ b0 K H · § 5 / 5 · ¨1  a ¸ 5 ¨1  1 ¸ 0  KH © ¹ ¹ © 0 1

54 

2

s  15s  50 s  s  1

5, b1

1

AutomaticControlSystems,9thEdition

0: a0  b0 K H









i









e ss



UnitparabolicInput:







e ss



Chapter5Solutions 1: a1  b1 K H

i

0

a1  b1 K H

1 1/ 5

a0 K H

1/ 5

Golnaraghi,Kuo 4 / 5 z 0

4

f

 (d) K H

H ( 0 ) 10 

G( s)







 M ( s )











UnitstepInput:







UnitrampInput:









i









e ss



ess



UnitparabolicInput:







1 G( s) H ( s) a0



e ss



10, a1

4

3

2







UnitstepInput:







Unitrampinput:









a0

 ess

 i

4, a1

s  12 s  5 s  10

5, a2

12, b0

0: a0  b0 K H

0 i

Thesystemisstable.

1, b1

a1  b1 K H

5

a0 K H

100

1: a1  b1 K H

0, b2

0

5 z 0

0.05 

f

 K H 1 

4, a2

Thesystemisstable.

48, a3

16, b0

4, b1

1, b2

§ b0 K H · § 4 · ¨1  a ¸ ¨1  4 ¸ 0  KH © ¹ ¹ © 0 1

0: a0  b0 K H

0

i

1: a1  b1 K H

55 



§ b0 K H · 1 § 10 · ¨ 1  a ¸ 10 ¨ 1  10 ¸ 0  KH © © ¹ ¹ 0

s  16 s  48 s  4 s  4



2

1

s4

56(a) M ( s )

1 3

4  1 3 z 0

0, b3

0

AutomaticControlSystems,9thEdition





 e ss





UnitparabolicInput:







a1  b1 K H

4 1

3

a0 K H

4

4

e ss



Chapter5Solutions

Golnaraghi,Kuo



f



K ( s  3)

(b) M ( s )

3

2

s  3s  ( K  2) s  3K  a0









UnitstepInput:







UnitrampInput:







 i







 e ss

3 K , a1

KH K  2, a2

1

Thesystemisstablefor K ! 0. 



3, b0

3 K , b1

K

§ b0 K H · § 3K · ¨ 1  a ¸ ¨ 1  3K ¸ 0  KH © ¹ ¹ © 0 1

 ess





0: a0  b0 K H

i

0

a1  b1 K H

K  2 K

2

a0 K H

3K

3K



UnitparabolicInput:









TheaboveresultsarevalidforK>0.

e ss



1: a1  b1 K H

K  2 K



f

   (c) M ( s )

s5 4

3

2

s  15 s  50 s  10 s









UnitstepInput:







UnitrampInput:



a0

 ess

0, a1

H ( s) 10, a2

10 s s5 50, a3

KH 15, b0

so 0

H ( s)



2

s

5, b1

§ a2  b1 K H · 1 § 50  1 u 2 · ¨ a ¸ 2 ¨© 10 ¸¹ 2.4  KH © ¹ 1 1

56 

lim

1

2 z 0

AutomaticControlSystems,9thEdition 









UnitparabolicInput:









e ss

f

e ss

f

Chapter5Solutions

Golnaraghi,Kuo

 K ( s  5)

(d) M ( s )

4

3

1

KH

2

s  17 s  60 s  5 Ks  5 K

Thesystemisstablefor0

Automatic Control Systems 9th Edition Solution Manual

Source: https://pdfcoffee.com/automatic-control-systems-9ed-kuo-solution-manual-pdf-free.html

0 Response to "Automatic Control Systems 9th Edition Solution Manual"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel